首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
Cytochrome P450 2C9 (CYP2C9) expression is regulated by multiple nuclear receptors including the constitutive androstane receptor (CAR) and pregnane X receptor (PXR). We compared coregulation of CYP2C9 with CYP2B6 and CYP3A4, prototypical target genes for human CAR and PXR using human hepatocyte cultures treated for three days with the PXR activators clotrimazole, rifampin, and ritonavir; the CAR/PXR activator phenobarbital (PB); and the CAR‐selective agonists CITCO, (6‐(4‐chlorophenyl)imidazo[2,1‐β][1,3]thiazole‐5‐carbaldehyde‐O‐(3,4‐dichlorobenzyl)oxime) and phenytoin. Clotrimazole, rifampin, ritonavir, phenytoin, and phenobarbital induced CYP2C9 consistent with previous findings for CYP3A4. We observed EC50 values of 519 μM (phenobarbital), 11 μM (phenytoin), and 0.75 μM (rifampin), similar to those for CYP3A4 induction. Avasimibe, a potent PXR activator, produced nearly identical concentration‐dependent CYP2C9 and CYP3A4 activity profiles and EC50 values. In 17 donors, rifampin increased mean basal CYP2C9 activity from 59 ± 43 to 143 ± 68 pmol/mg protein/min; fold induction ranged from 1.4‐ to 6.4‐fold. Enzyme activity and mRNA measurements after rifampin, CITCO and PB treatment demonstrated potency and efficacy consistent with CYP2C9 regulation being analogous to CYP3A4 rather than CYP2B6. We demonstrate that hepatic CYP2C9 is differentially regulated by agonists of CAR and PXR, and despite sharing common regulatory mechanisms with CYP3A4 and CYP2B6; this enzyme exhibits an induction profile more closely aligned with that of CYP3A4. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:43–58, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20264  相似文献   

3.
Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5′ upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TRα1, TRβ1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TRα1, TRβ1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.  相似文献   

4.
This study reports that dexamethasone (DEX) significantly induces CYP3A11, CYP3A13 and CYP3A25 mRNA expression in male and female 4 days, 3 weeks and 18 weeks old C57BL/6J mice. Furthermore, CYP3A activity, as measured by erythromycin-N-demethylation, is also significantly increased. PXR, RXRalpha and CAR are known to be involved in the induction of CYP3As. Here we report nuclear receptors PXR and RXRalpha but not CAR demonstrate gender- and age-dependent expression. Also, treatment of C57BL/6J mice with DEX induces PXR but not RXRalpha or CAR. In summary, we demonstrate DEX is not only able to up-regulate CYP3A expression and activity, but also the nuclear receptor PXR through which it may exert this effect. Furthermore, the gender- and age-dependent pattern of basal PXR and RXRalpha expression is similar to the 3 CYP3As analysed.  相似文献   

5.
Nuclear receptors CAR and PXR play a key role in cytochrome P450 gene induction by xenobiotics. Human cytochrome P450 3A7 (CYP3A7) is expressed from early in gestation until the perinatal period, when there is a switch in expression to CYP3A4. Here we demonstrate that a PXR and CAR responsive enhancer is located approximately 8 kb upstream of the proximal CYP3A7 promoter. This distal xenobiotic responsive enhancer module (XREM) is conserved with the XREM of CYP3A4. Interestingly, not only the XREM, but also the entire promoters exhibit 90% sequence identity up to -8.8 kb, indicating a close evolutionary distance. We propose that the promoters have coevolved to functionally conserve P450 gene induction in response to xenobiotics through CAR and PXR. Thus, nuclear receptors for xenobiotics may not only play a role to provide a survival advantage during adulthood, but also to protect the embryo against endogenous and exogenous toxins.  相似文献   

6.
Human CYP3A enzymes play a pivotal role in the metabolism of many drugs, and the variability of their expression among individuals may have a strong impact on the efficacy of drug treatment. However, the individual contributions of the four CYP3A genes to total CYP3A activity remain unclear. To elucidate the role of CYP3A7, we have studied its expression in human liver and intestine. In both organs, expression of CYP3A7 mRNA was polymorphic. The recently identified CYP3A7*1C allele was a consistent marker of increased CYP3A7 expression both in liver and intestine, whereas the CYP3A7*1B allele was associated with increased CYP3A7 expression only in liver. Because of the replacement of part of the CYP3A7 promoter by the corresponding region of CYP3A4, the CYP3A7*1C allele contains the proximal ER6 motif of CYP3A4. The pregnane X and constitutively activated receptors were shown to bind with higher affinity to CYP3A4-ER6 than to CYP3A7-ER6 motifs and transactivated only promoter constructs containing CYP3A4-ER6. Furthermore, we identified mutations in CYP3A7*1C in addition to the ER6 motif that were necessary only for activation by the constitutively activated receptor. We conclude that the presence of the ER6 motif of CYP3A4 mediates the high expression of CYP3A7 in subjects carrying CYP3A7*1C.  相似文献   

7.
8.
9.
10.
11.
12.
Cytochromes P450 (CYP)-2C enzymes fulfill an important role in xenobiotic metabolism and therefore have extensively been studied in rodents and humans. However, no CYP2C genes have been described in avian species to date. In this paper, we report the cloning, functional analysis, and regulation of chicken CYP2C45. The sequence shares up to 58% amino acid identity with CYP2Cs in other species. The overexpression of CYP2C45 in chicken hepatoma cells leghorn male hepatoma (LMH) led to increased scoparone metabolism. CYP2C45 regulation was studied in LMH cells at the mRNA level and in reporter gene assays using a construct containing 2.6 kb of its 5'-flanking region. Exposure of LMH cells to phenobarbital or metyrapone led to a 95- or 210-fold increase in CYP2C45 mRNA and a 140- or 290-fold increase in reporter gene expression, respectively. A phenobarbital response enhancer unit (PBRU) of 239 bp containing a DR-4 nuclear receptor binding site was identified within the 2.6-kb fragment. Site-specific mutation of the DR-4 revealed the requirement of this motif for CYP2C45 induction by drugs. The chicken xenobiotic receptor CXR interacted with the PBRU in electromobility shift and transactivation assays. Furthermore, the related nuclear receptors, mouse PXR and mouse CAR, transactivated this enhancer element, suggesting evolutionary conservation of nuclear receptor-DNA interactions in CYP2C induction.  相似文献   

13.
Danshen (Radix Salvia miltiorrhiza) is a famous Traditional Chinese Medicine used widely for the treatment of coronary heart disease and cerebrovascular disease. Diterpenoid tanshinones including tanshinone I, tanshinone IIA and cryptotanshinone are the major bioactive components from Danshen herb. Previous reports have demonstrated that Danshen extracts could induce the expression of CYP3A in rodents, however, the constituents responsible for Danshen-mediated CYP3A induction and the underlying molecular mechanisms remain unknown. The discovery of a family of nuclear receptors such as pregnane X receptor (PXR), constitutive androstane receptor (CAR) and glucocorticoid receptor (GR) gives insight into the molecular explanation of CYP3A induction by xenobiotics. In the present study, interactions between Danshen constituents and human PXR were evaluated using a reporter gene assay. Our observations showed that Danshen ethanol extract could activate human PXR and induce the CYP3A4 reporter construct in HepG2 cells. Tanshinone IIA and cryptotanshinone were identified as efficacious PXR agonists, and cryptotanshinone activated the CYP3A4 promoter more strongly than tanshinone IIA. Furthermore, CAR and GR were also involved in the induction of CYP3A4 expression by tanshinones, though their roles seemed not as important as PXR. Treatment of LS174T cells with cryptotanshinone or tanshinone IIA resulted in a significant increase of CYP3A4 mRNA, which was consistent with the results from the reporter gene assay. Collectively, activation of PXR and the resultant CYP3A4 induction mediated by cryptotanshinone and tanshinone IIA provide a molecular mechanism for previously observed CYP3A induction by Danshen extracts, and our findings also suggest that caution should be taken when Danshen products are used in combination with therapeutic drugs metabolized by CYP3A4.  相似文献   

14.
Intestinal P-glycoprotein, which is encoded by the MDR1 gene, plays an important role in the absorption and presystemic elimination of many xenobiotics. Hence, an understanding of the factors regulating its expression and function is of substantial interest. In addition to genetic factors, exposure to drugs such as rifampin can profoundly affect its expression. So far, the mechanisms by which rifampin induces MDR1 expression are poorly understood. Recent studies demonstrate that the nuclear receptor PXR (pregnane X receptor) is involved in xenobiotic induction of CYP3A4. Because CYP3A4 and MDR1 are often co-induced, we investigated whether a similar mechanism is also involved in MDR1 induction. The human colon carcinoma cell line LS174T was used as an intestinal model to study induction because in these cells the endogenous MDR1 gene is highly inducible by rifampin. The 5'-upstream region of human MDR1 was examined for the presence of potential PXR response elements. Several binding sites were identified that form a complex regulatory cluster at about -8 kilobase pairs. Only one DR4 motif within this cluster is necessary for induction by rifampin. We conclude that induction of MDR1 is mediated by a DR4 motif in the upstream enhancer at about -8 kilobase pairs, to which PXR binds.  相似文献   

15.
16.
Cytochrome P450 3A4 and 3A7 (CYP3A4 and CYP3A7, respectively) are predominant forms in the human adult and fetal liver, respectively. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is known to be a potent inducer of CYP3A4 in human colon carcinoma Caco-2 via vitamin D receptor (VDR). However, whether CYP3A7 is inducible by 1,25(OH)(2)D(3) has not yet been elucidated. In the present study, we examined the effect of 1,25(OH)(2)D(3) on CYP3A7 gene expression in Caco-2 cells, which express CYP3A4 and CYP3A7 mRNAs. 1,25(OH)(2)D(3) hardly induced the expression of CYP3A7 mRNA in contrast to the marked induction of CYP3A4 mRNA. Reporter assay using 5'-franking region CYP3A4 and CYP3A7 genes also revealed that 1,25(OH)(2)D(3) activates CYP3A4 promoter, but not CYP3A7 promoter, which has two mutations in the proximal ER6 site compared with CYP3A4 promoter. In addition, we found that the binding of VDR to the proximal ER6 in CYP3A7 gene was markedly less than that to the proximal ER6 in CYP3A4 gene using gel shift assay. Taken together, the decrease of VDR binding to the proximal ER6 caused by the mutation results in the loss of CYP3A7 gene activation by 1,25(OH)(2)D(3).  相似文献   

17.
18.
CYP3A4 and pregnane X receptor humanized mice   总被引:2,自引:0,他引:2  
Marked species differences exist in P450 expression and activities. In order to produce mouse models that can be used to more accurately predict human drug and carcinogen metabolism, P450- and xenobiotic receptor humanized mice are being prepared using bacterial artificial chromosomes (BAC) and P1 phage artificial chromosomes (PAC) genomic clones. In some cases, transgenic mice carrying the human genes are bred with null-mice to produce fully humanized mice. Mice expressing human CYP1A1, CYP1A2, CYP2E1, CYP2D6, CYP3A4, and CYP3A7 were generated and characterized. Studies with the CYP3A4-humanized (hCYP3A4) mouse line revealed new information on the physiological function of this P450 and its role in drug metabolism in vivo. With this mouse line, CYP3A4, under certain circumstances, was found to alter the serum levels of estrogen resulting in deficient lactation and low pup survival as a result of underdeveloped mammary glands. This hCYP3A4 mouse established the importance of intestinal CYP3A4 in the pharmacokinetics of orally administered drugs. The hCYP3A4 mice were also used to establish the mechanisms of potential gender differences in CYP3A4 expression (adult female > adult male) that could account for human gender differences in drug metabolism and response. The pregnane X receptor (PXR) is also involved in induction of drug metabolism through its target genes including CYP3A4. Since species differences exist in ligand specificity between human and mice, a PXR-humanized mouse (hPXR) was produced that responds to human PXR activators such as rifampicin but does not respond to the rodent activator pregnenalone 16alpha-carbonitrile.  相似文献   

19.
The arylamide 2-acetylaminofluorene (AAF) is a powerful carcinogen displaying a marked promoting activity, also known to regulate expression of liver detoxifying proteins. In this study we identified CYP3A23, a major inducible cytochrome P-450 (CYP) isoform, as an AAF target in hepatocytes. Indeed, exposure to AAF of primary rat hepatocytes resulted in a marked up-regulation of CYP3A23 expression at both mRNA and protein levels. Using CYP3A23 reporter gene constructs, we further demonstrated that AAF activated the CYP3A23 Direct Repeat 3 (DR3) promoter element interacting with the nuclear pregnane X receptor (PXR). Moreover, the PXR antagonist ecteinascidin-743 fully suppressed AAF-related CYP3A23 induction. Low doses of AAF inhibiting DNA synthesis in hepatocytes however failed to trigger PXR-related CYP3A23 induction and PXR-negative epithelial liver cells remained sensitive to the mito-inhibitory effects of AAF. Such data indicate that AAF up-regulates CYP3A23 through PXR activation but does not require PXR for exerting its carcinogenic promoting properties based on inhibition of cell growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号