首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
The binding of Ni-2+ and Mn-2+ to thiamin phosphate and thiamin pyrophosphate (thiamin-PP) has been compared with the binding of these ions to oxythiamin phosphate and oxythiamin pyrophosphate, analogues of thiamin in which the C-4 amino group has been replaced by an -OH group. The replacement of the NH2 group results in reduced basicity of N-1 of the pyrimidine ring of oxythiamine derivatives. The effects of pD, ligand concentration, and temperature on the binding of metal ions to N-1 have been studied by observing the metal ion-induced shifting and broadening of the C-6-H signal of these compounds. The results indicate the following: (a) the metal ion is held near N-1, resulting in a "folded" conformation, because of a favorable bonding interaction between N-1 and the metal ion rather than for general conformational reasons alone; and (b) the amount of "folded" conformation present in the different pyrophosphate complexes at neutral pH follows the order: Ni-2+-thiamin-PP greater than Mn-2+-thiamin-PP greater than Mn-2+-oxythiamin-PP and Ni-2+-oxythiamin-PP It is concluded that the strength of the metal ion-pyrimidine interaction in the "folded" conformation depends strongly both on the coordination affinity of the metal ion and on the basicity of N-1. Since the interaction of the phosphate-bound metal ion with the pyrimidine ring in the Mg-2+-thiamin-PP complex is probably weaker than the corresponding interaction in the Mn-2+-thiamin-PP complex, these results predict that the Mg-2+-thiamin-PP complex in solution, at neutral pH, exists predominantly in an "unfolded" conformation.  相似文献   

2.
A dominant mutation, responsible for the resistance to oxythiamin inSaccharomyces cerevisiae was mapped on the right arm of chromosome IV, 4.6 cM centromere-distally totrp1. The corresponding gene is not involved in the control of intracellular content of total thiamin during growth on a minimal medium without thiamin.  相似文献   

3.
The physiological significance of thiaminase II, which catalyzes the hydrolysis of thiamin, has remained elusive for several decades. The C-terminal domains of THI20 family proteins (THI20/21/22) and the whole region of PET18 gene product of Saccharomyces cerevisiae are homologous to bacterial thiaminase II. On the other hand, the N-terminal domains of THI20 and THI21 encode 2-methyl-4-amino-5-hydroxymethylpyrimidine kinase and 2-methyl-4-amino-5-hydroxymethylpyrimidine phosphate kinase involved in the thiamin synthetic pathway. In this study, it was first indicated that the C-terminal domains of the THI20 family and PET18 are not required for de novo thiamin synthesis in S. cerevisiae, using a quadruple deletion strain expressing the N-terminal domain of THI20. Biochemical analysis using cell-free extracts and recombinant proteins demonstrated that yeast thiaminase II activity is exclusively encoded by THI20. It appeared that Thi20p has an affinity for the pyrimidine moiety of thiamin, and HMP produced by the thiaminase II activity is immediately phosphorylated. Thi20p was found to participate in the formation of thiamin from two synthetic antagonists, pyrithiamin and oxythiamin, by hydrolyzing both antagonists and phosphorylating HMP to give HMP pyrophosphate. Furthermore, 2-methyl-4-amino-5-aminomethylpyrimidine, a presumed naturally occurring thiamin precursor, was effectively converted to HMP by incubation with Thi20p. It is proposed that the thiaminase II activity of Thi20p is involved in the thiamin salvage pathway by catalyzing the hydrolysis of HMP precursors in S. cerevisiae.  相似文献   

4.
Carbon 13 NMR spectra have been obtained for aqueous solutions of DL-2-(alpha-hydroxyethyl)thiamin, DL-2-(alpha-hydroxybenzyl)thiamin, DL-2-(alpha-hydroxybenzyl)oxythiamin, and related N-3 methyl and N-3 benzyl analogs. The unusually large downfield shift of the 13C resonance of C-2 of hydroxyethylthiamin suggests that this carbon bears a partial positive charge. This result stands in contrast to results of x-ray crystallographic studies of hydroxyethylthiamin, which place a partial negative charge on C-2 (Pletcher, J., and Sax, M. (1974) J. Am. Chem. Soc. 96, 155-165). A partial positive charge on C-2 helps to explain the facility of carbanion formation at the alpha carbon both enzymatically and in model systems. The rates of proton-deuteron exchange of (C-alpha)-H with solvent deuterium, and of release of aldehyde to regenerate thiamin have been measured for hydroxyethylthiamin and analogs. The differences in kinetic acidity of (C-alpha)-H and of rates of aldehyde release are rationalized in terms of differing electron-withdrawing abilities of the substituents attached to N-3, and appear not to be related to intramolecular basic catalysis of these processes by the C-4' amino group.  相似文献   

5.
Aims: Resistance to acidic stress contributes to bacterial persistence in the host and is thought to promote their passage through the human gastric barrier. The aim of this study was to examine whether nucleosides have a role in the survival under acidic conditions in Escherichia coli. Methods and Results: We found that adenosine has a function to survive against extremely acidic stress. The deletion of add encoding adenosine deaminase that converts adenosine into inosine and NH3 attenuated the survival in the presence of adenosine. The addition of adenosine increased intracellular pH of E. coli cells in pH 2·5 medium. Addition of inosine or adenine did not increase the resistance to acidic conditions. Conclusions: Our present results imply that adenosine was used to survive under extremely acidic conditions via the production of NH3. Significance and Impact of the Study: It has been proposed that amino acid decarboxylation is the major system for the resistance of E. coli to acidic stress. In this study, the adenosine deamination was shown to induce the survival under acidic conditions, demonstrating that bacteria have alternative strategies to survive under acidic conditions besides amino acid decarboxylation.  相似文献   

6.
Neither exit nor counterflow efflux of thiamin, taken up previously by an active transport, were found in Saccharomyces cerevisiae, in either the wild type or a mutant with a lower rate of thiamin phosphorylation. Complete inhibition of thiamin phosphorylation by oxythiamin did not lead to any release of thiamin taken up by the cell.  相似文献   

7.
The crystal structure of Bacillus subtilis thiamin phosphate synthase complexed with the reaction products thiamin phosphate and pyrophosphate has been determined by multiwavelength anomalous diffraction phasing techniques and refined to 1.25 A resolution. Thiamin phosphate synthase is an alpha/beta protein with a triosephosphate isomerase fold. The active site is in a pocket formed primarily by the loop regions, residues 59-67 (A loop, joining alpha3 and beta2), residues 109-114 (B loop, joining alpha5 and beta4), and residues 151-168 (C loop, joining alpha7 and beta6). The high-resolution structure of thiamin phosphate synthase complexed with its reaction products described here provides a detailed picture of the catalytically important interactions between the enzyme and the substrates. The structure and other mechanistic studies are consistent with a reaction mechanism involving the ionization of 4-amino-2-methyl-5-hydroxymethylpyrimidine pyrophosphate at the active site to give the pyrimidine carbocation. Trapping of the carbocation by the thiazole followed by product dissociation completes the reaction. The ionization step is catalyzed by orienting the C-O bond perpendicular to the plane of the pyrimidine, by hydrogen bonding between the C4' amino group and one of the terminal oxygen atoms of the pyrophosphate, and by extensive hydrogen bonding and electrostatic interactions between the pyrophosphate and the enzyme.  相似文献   

8.
Thiamin phosphate synthase catalyzes the formation of thiamin phosphate from 4-amino-5-(hydroxymethyl)-2-methylpyrimidine pyrophosphate and 5-(hydroxyethyl)-4-methylthiazole phosphate. Several lines of evidence suggest that the reaction proceeds via a dissociative mechanism. The previously determined crystal structure of thiamin phosphate synthase in complex with the reaction products, thiamin phosphate and magnesium pyrophosphate, provided a view of the active site and suggested a number of additional experiments. We report here seven new crystal structures primarily involving crystals of S130A thiamin phosphate synthase soaked in solutions containing substrates or products. We prepared S130A thiamin phosphate synthase with the intent of characterizing the enzyme-substrate complex. Surprisingly, in three thiamin phosphate synthase structures, the active site density cannot be modeled as either substrates or products. For these structures, the best fit to the electron density is provided by a model that consists of independent pyrimidine, pyrophosphate, and thiazole phosphate fragments, consistent with a carbenium ion intermediate. The resulting carbenium ion is likely to be further stabilized by proton transfer from the pyrimidine amino group to the pyrophosphate to give the pyrimidine iminemethide, which we believe is the species that is observed in the crystal structures.  相似文献   

9.
Many microorganisms, as well as plants and fungi, synthesize thiamin, but vertebrates do not produce it. Phosphomethyl pyrimidine kinase is an enzyme involved in an intermediary step of thiamin biosynthesis from purine molecules. This enzyme is absent in humans. Thus, it is a potential chemotherapeutic target for antileptospiral treatment. Structure of this enzyme from Leptospira interrogans serovar lai strain 56601 has not yet been elucidated. We used the structural template of phosphomethyl pyrimidine kinase from Thermus thermophilus HB8 for modeling the phosphomethyl pyrimidine kinase structure from Leptospira interrogans serovar lai strain 56601 . The model is deposited in Protein Data Bank (PDB ID: 2G53) at RCSB. Thus, we analyse and propose the usefulness of the modeled phosphomethyl pyrimidine kinase for the design of suitable inhibitors towards the treatment of leptospirosis.  相似文献   

10.
Affinities of 14 thiamin derivatives or antagonists to a thiamin-binding protein isolated from buckwheat seeds were determined. A competitive displacement of radiolabeled thiamin by unlabeled ligand was analysed by a computerized model-fitting procedure. The dissociation constant of the thiamin-protein complex was 0.93 microM. Most modifications in ligand chemical structure weakened the ligand-protein interaction. A model of the thiamin-binding site is suggested. The hydroxyethyl-chain of thiamin while protein-bound appears to be excluded from the binding region. A positively charged quaternary nitrogen atom of the thiazolium ring probably interacts with some negative group(s) of protein. The rest of the thiazolium ring as well as the amino group of the pyrimidine fragment serve as additional anchors. The three structural features of the thiamin molecule accounting for binding contribute equally to overall binding energy by about 11-12 kJ/mol.  相似文献   

11.
The amide nitrogen atom of glutamine is incorporated into the pyrimidine moiety of thiamin in Escherichia coli and Saccharomyces cerevisiae. However, addition of casamino acids to the medium increases incorporation of the amide nitrogen atom of glutamine in E. coli, but decreases it in S. cerevisiae. This suggests that some amino acids other than glutamine in casamino acids are more direct precursors of the pyrimidine moiety in S. cerevisiae. To determine the direct precursor, we investigated the competitive effect of 14N-amino acids on the incorporation of 15NH4Cl into the pyrimidine moiety and found that histidine decreased the incorporation of 15N. Thus, histidine was concluded to be the direct precursor of the nitrogen atom of the pyrimidine moiety of thiamin in S. cerevisiae.  相似文献   

12.
Ethylene has been shown to stimulate the degradation of indole-3-acetic acid (IAA) in citrus leaf tissues via the oxidative decarboxylation pathway, resulting in the accumulation of indole-3-carboxylic acid (ICA). Preliminary data indicated that ethylene stimulates only the first step of this pathway, i.e. the decarboxylation of IAA which leads to the formation of indole-3-methanol. The effect of ethylene seems to be a specific one since 2,5-norbornadiene, an ethylene action inhibitor, significantly inhibited the stimulation of IAA decarboxylation by ethylene. It has long been suggested that peroxidase or a specific form of the peroxidase complex (`IAA oxidase') catalyse this step. However, we did not observe a clear effect of ethylene on the peroxidase system. An alternative possibility, that the stimulatory effect of ethylene on IAA catabolism results from increased formation of hydrogen peroxide (H2O2), a co-factor for peroxidase activity, was verified by direct measurements of H2O2 in the tissues or by assaying the activity of gluthathione reductase, which has been shown to be induced by oxygen species. This possibility is further supported by the observations showing that IAA decarboxylation in control tissues was enhanced to the level detected in ethylene-treated tissues by application of H2O2.  相似文献   

13.
Twelve genes involved in thiamin biosynthesis in prokaryotes have been identified and overexpressed. Of these, six are required for the thiazole biosynthesis (thiFSGH, thiI, and dxs), one is involved in the pyrimidine biosynthesis (thiC), one is required for the linking of the thiazole and the pyrimidine (thiE), and four are kinase genes (thiD, thiM, thiL, and pdxK). The specific reactions catalyzed by ThiEF, Dxs, ThiDM, ThiL, and PdxK have been reconstituted in vitro and ThiS thiocarboxylate has been identified as the sulfur source. The X-ray structures of thiamin phosphate synthase and 5-hydroxyethyl-4-methylthiazole kinase have been completed. The genes coding for the thiamin transport system (thiBPQ) have also been identified. Remaining problems include the cloning and characterization of thiK (thiamin kinase) and the gene(s) involved in the regulation of thiamin biosynthesis. The specific reactions catalyzed by ThiC (pyrimidine formation), and ThiGH and ThiI (thiazole formation) have not yet been identified. Received: 23 August 1998 / Accepted: 16 January 1999  相似文献   

14.
This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose acceptors, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer’s disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals.  相似文献   

15.
Decarboxylation of about twenty kinds of α, β and γ-amino acids in the reaction with glyoxal or ninhydrin was investigated. The decarboxylation rate of amino acids proved that steric and polar effects had important roles in the reaction.

From the data of pK2 values and decarboxylation rates of amino acids, it can be concluded that under a similar steric environment, the decarboxylation rate depends on the anion concentration of amino acids.

Besides carbon dioxide, acetaldehyde, 2-propanone and propionaldehyde were respectively detected from the reaction of β-alanine, β and γ-amino-n-butyric acids with glyoxal or ninhydrin. The decarboxylation mechanism of these amino acids seemed to take place through the corresponding β- or γ-keto acid.

Oxygen absorption was also observed from the reaction of amino acids with dicarbonyl compounds.  相似文献   

16.
A protein which contains 2-aminoethylphosphonic acid (AEP) has been isolated from the ciliate protozoan Tetrahymena thermophila. The protein contains about 30% carbohydrate with both N- and O-glycosidic linkages to the polypeptide and 8% AEP which is attached only to the O-linked glycoside. The amino group of AEP is unreactive to dansyl chloride as is the amino terminus of the protein. The polypeptide portion of the molecule, Mr 22,500, contains 22% glycine, 5.5% hydroxyproline, and is quite acidic. The phosphoprotein is found in the cell membranes. Its synthesis is inhibited by tunicamycin to the same extent which the antibiotic inhibits cell division.  相似文献   

17.
Abstract

The structural distortions of the duplex dodecamer d(ATTAACGTTAAT)2 monofunctionally alkylated by mitomycin C have been studied by the use of chemical probes reactivity and resonance Raman spectroscopy. This sequence contains the 5′-ACGT sequence for which mitomycin C was determined to present the best affinity (S. Kumar, R. Lipman, and M. Tomasz, Biochemistry 31, 1399 (1992)). Raman spectroscopy as well as osmium tetroxyde reactivity indicate that the distortion of the double helix structure is located around the central CG bases. Mitomycin C reacts exclusively with the 2-amino group of guanine and this binding does not disrupt the inter bases H-bonds, as indicated by chloroacetaldehyde reactivity. Although resonance Raman spectroscopy does not allow the handedness of the monoalkylated CG/GC sequence to be determined, it indicates a similarity between the base stacking and that which would be observed for alternating purine/pyrimidine sequences at high salt concentration.  相似文献   

18.
R H White  F B Rudolph 《Biochemistry》1979,18(12):2632-2636
Methods are described for the cleavage, extraction, and subsequent gas chromatographic-mass spectrometric analysis of the pyrimidine moiety of thiamin as 2-methyl-4-amino-5-[(ethylthio)methyl]pyrimidine. The methods are of a general nature and can be applied to any system. Using these methods to evaluate the incorporation of 13C-, 15N-, and 2H-labeled glycines into the pyrimidine moiety of thiamin by Escherichia coli, we established that the nitrogen and carbon atoms of glycine are incorporated as a unit into the pyrimidine. 13C- and 15N-labeled glycines are incorporated at greater than 60% but deuterium from [2-(2)H2]glycine was incorporated at only 18%. A detailed analysis of the mass fragmentation pattern of the pyrimidine derivative has established that the glycine nitrogen atom supplies the N-1 of the pyrimidine and that the C-1 and C-2 of the glycine supplies the C-4 and C-6 of the pyrimidine, respectively. This evidence is consistent with the substitution of a C2 unit between the C-5 and C-4 of the 4-aminoimidazole ribonucleotide precursor during the biosynthesis of the pyrimidine moiety of thiamin in E. coli.  相似文献   

19.
The thiamin diphosphate-dependent enzyme indolepyruvate decarboxylase catalyses the formation of indoleacetaldehyde from indolepyruvate, one step in the indolepyruvate pathway of biosynthesis of the plant hormone indole-3-acetic acid. The crystal structure of this enzyme from Enterobacter cloacae has been determined at 2.65 A resolution and refined to a crystallographic R-factor of 20.5% (Rfree 23.6%). The subunit of indolepyruvate decarboxylase contains three domains of open alpha/beta topology, which are similar in structure to that of pyruvate decarboxylase. The tetramer has pseudo 222 symmetry and can be described as a dimer of dimers. It resembles the tetramer of pyruvate decarboxylase from Zymomonas mobilis, but with a relative difference of 20 degrees in the angle between the two dimers. Active site residues are highly conserved in indolepyruvate/pyruvate decarboxylase, suggesting that the interactions with the cofactor thiamin diphosphate and the catalytic mechanisms are very similar. The substrate binding site in indolepyruvate decarboxylase contains a large hydrophobic pocket which can accommodate the bulky indole moiety of the substrate. In pyruvate decarboxylases this pocket is smaller in size and allows discrimination of larger vs. smaller substrates. In most pyruvate decarboxylases, restriction of cavity size is due to replacement of residues at three positions by large, hydrophobic amino acids such as tyrosine or tryptophan.  相似文献   

20.
3-Methyl analogs of the calcium channel blocker diltiazem are reported. The title compounds were prepared from readily available amino thiophenols by a six step sequence which involves setting up the desired 2,3-cis-stereochemistry through decarboxylation under acidic conditions. To our knowledge, there are the most potent analogs of diltiazem reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号