首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Enterobactin-mediated iron transport in Pseudomonas aeruginosa.   总被引:21,自引:9,他引:12       下载免费PDF全文
K Poole  L Young    S Neshat 《Journal of bacteriology》1990,172(12):6991-6996
A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin. Apparently, at least two uptake systems for ferrienterobactin exist in P. aeruginosa: one of higher affinity which is specifically inducible by enterobactin under iron-limiting conditions and the second, of lower affinity, which is also inducible under iron-limiting conditions but is independent of enterobactin for induction.  相似文献   

2.
Reversed-phase HPLC separation of enterobactin and its 2,3-dihydroxybenzoylserine derivatives was used for a comparative analysis of mutants of Escherichia coli, defective in the regulation of enterobactin biosynthesis (fur), enterobactin transport (fepA) and enterobactin esterase (fes). A complete separation of all 2,3-dihydroxybenzoylserine compounds was achieved: the monomer (DHBS), the linear dimer (DHBS)2 and trimer (DHBS)3, the cyclic trimer, enterobactin, as well as 2,3-dihydroxybenzoic acid. The production of all these compounds was followed after ethylacetate extraction from acidified culture fluids. Enterobactin was found to be the predominant product in all mutant strains. The mutant strains behaved differently with regard to the breakdown products. All degradation products, such as DHBS, (DHBS)2 and (DHBS)3, were detected in the overproducing fur mutant where both transport and esterase are still functioning, while only the monomer, DHBS, was detected in the fepA mutant and no degradation was found in the esterase-deficient fes mutant. From the pattern of breakdown products it may be inferred that the esterase acts in two different ways, depending on whether transport is functioning or not. Thus, esterolytic cleavage of ferric enterobactin after entering the cells results in a mixture of all three hydrolysis products, i.e. DHBS, (DHBS)2 and (DHBS)3, while cleavage of iron-free enterobactin subsequent to its biosynthesis yields only the monomer. Thus, the results of quantitative HPLC analysis of enterobactin and its breakdown products show that different enterobactin esterase products arise, depending on whether iron is bound to enterobactin or not.  相似文献   

3.
Recently, beta-lactam agents containing iron-chelating moieties, such as E0702, which contains catechol, and pirazmonam and U-78,608, which contain 3-hydroxypyridone, have been developed. By determining the susceptibility to these agents of Escherichia coli mutants lacking various iron-repressible outer membrane proteins, we showed that two of these proteins with hitherto unknown functions, Fiu and Cir, were apparently involved in the transport of monomeric catechol and its analogs. These results confirm the conclusion of Curtis and co-workers, which was obtained by using a different set of catechol-containing antibiotics (N. A. C. Curtis, R. L. Eisenstadt, S. J. East, R. J. Cornford, L. A. Walker, and A. J. White, Antimicrob. Agents Chemother. 32:1879-1886, 1988). E0702 was shown to enhance the uptake of radioactive ferric iron into wild-type cells but not into cir fiu double mutants. By combining the influx of E0702 with its hydrolysis by a periplasmic beta-lactamase, we showed that the wild-type cells transported unliganded E0702 at a rate comparable to or even higher than the rate of transport of the E0702-Fe3+ complex. We postulate that the main function of Cir and Fiu may be to recapture the hydrolytic products of enterobactin, such as 2,3-dihydroxybenzoic acid and 2,3-dihydroxybenzoylserine.  相似文献   

4.
A number of mutants of Salmonella typhimurium were isolated which are blocked in the biosynthesis of enterobactin, an iron chelator that is secreted by the wild-type bacteria when they are grown on low iron media. One class of these enb mutants accumulates the enterobactin precursor 2,3-dihydroxybenzoic acid, and another class does not accumulate any detectable catechol precursor. The enb mutants grow very well on a glucose-mineral salts medium. Addition of citrate, itself an iron chelator, to the medium drastically inhibits growth unless the medium is supplemented with enterobactin or iron salts. Citrate inhibits iron uptake from the medium by enb mutants; enterobactin counteracts this inhibition and also, by itself, increases iron uptake. Thus, the apparent function of enterobactin is to promote the absorption of iron from the medium by the bacteria. Transduction experiments showed that the genes for enterobactin biosynthesis are closely linked on the S. typhimurium chromosome. It is suggested that they form an operon which is repressed by the presence of iron. S. typhimurium can utilize the iron chelate ferrichrome. (Deferriferrichrome is a cyclic hexapeptide that is produced by some fungi but not by S. typhimurium.) The enb mutants use ferrichrome as an effective growth factor.  相似文献   

5.
Analysis of a clinical isolate of Acinetobacter baumannii showed that this bacterium was able to grow under iron-limiting conditions, using chemically defined growth media containing different iron chelators such as human transferrin, ethylenediaminedi-(o-hydroxyphenyl)acetic acid, nitrilotriacetic acid, and 2,2'-bipyridyl. This iron uptake-proficient phenotype was due to the synthesis and secretion of a catechol-type siderophore compound. Utilization bioassays using the Salmonella typhimurium iron uptake mutants enb-1 and enb-7 proved that this siderophore is different from enterobactin. This catechol siderophore was partially purified from culture supernatants by adsorption chromatography using an XAD-7 resin. The purified component exhibited a chromatographic behavior and a UV-visible light absorption spectrum different from those of 2,3-dihydroxybenzoic acid and other bacterial catechol siderophores. Furthermore, the siderophore activity of this extracellular catechol was confirmed by its ability to stimulate energy-dependent uptake of 55Fe(III) as well as to promote the growth of A. baumannii bacterial cells under iron-deficient conditions imposed by 60 microM human transferrin. Polyacrylamide gel electrophoresis analysis showed the presence of iron-regulated proteins in both inner and outer membranes of this clinical isolate of A. baumannii. Some of these membrane proteins may be involved in the recognition and internalization of the iron-siderophore complexes.  相似文献   

6.
The multicopper oxidase CueO had previously been demonstrated to exhibit phenoloxidase activity and was implicated in intrinsic copper resistance in Escherichia coli. Catecholates can potentially reduce Cu(II) to the prooxidant Cu(I). In this report we provide evidence that CueO protects E. coli cells by oxidizing enterobactin, the catechol iron siderophore of E. coli, in the presence of copper. In vitro, a mixture of enterobactin and copper was toxic for E. coli cells, but the addition of purified CueO led to their survival. Deletion of fur resulted in copper hypersensitivity that was alleviated by additional deletion of entC, preventing synthesis of enterobactin. In addition, copper added together with 2,3-dihydroxybenzoic acid or enterobactin was able to induce a Phi(cueO-lacZ) operon fusion more efficiently than copper alone. The reaction product of the 2,3-dihydroxybenzoic acid oxidation by CueO that can complex Cu(II) ions was determined by gas chromatography-mass spectroscopy and identified as 2-carboxymuconate.  相似文献   

7.
[背景] 铁是细菌生长的基本元素,而三价铁在自然水环境中几乎无法溶解。细菌已经进化出产生各种铁载体的能力,以促进铁的吸收。对于链霉菌,其特有的铁载体是去铁胺,同时它们也可以产生其他结构的铁载体,如ceolichelin、白霉素、肠杆菌素(enterobactin)和griseobactin。[目的] 揭示链霉菌中铁载体生物合成基因簇(Biosynthetic Gene Clusters,BGCs)的分布特点和基因簇特征,并探索其所合成铁载体的化合物结构。[方法] 利用生物信息学工具系统地分析308个具有全基因组序列信息的链霉菌中的铁载体生物合成基因簇,并用色谱和波谱方法分离和表征肠杆菌素相关天然产物。[结果] 发现Streptomyces albofaciens JCM 4342和其他少数菌株同时含有一个缺少2,3-二羟基苯甲酸(2,3-DHB)生物合成基因的孤立的肠杆菌素生物合成基因簇和另外一个推测可合成griseobactin的基因簇。从S.albofaciens JCM 4342发酵液中鉴定出4个肠杆菌素衍生的天然产物,包括链状2,3-二羟基苯甲酸酯-l-丝氨酸(2,3-DHBS)的三聚体和二聚体以及它们的脱水产物。[结论] 2个基因簇间存在一种特别的协同生物合成机制。推测是griseobactin基因簇负责合成2,3-DHB,而孤立的肠杆菌素基因簇编码的生物合成酶可夺取该底物,进而完成上述4种肠杆菌素衍生天然产物的生物合成。  相似文献   

8.
Escherichia coli strains B/r and 2276 contain an active transport system for iron. The system is energy-dependent, repressed by excess iron in the growth medium, and capable of accumulating iron inside of the cells at concentrations 2,000-fold higher than those in the medium. Two tonB-trp deletion mutants, strains B/rlt and B/lt7, which are sensitive to chromic ion and require high levels of iron for normal growth, are deficient in this active transport system. A point mutant, strain Chr2, which is also sensitive to chromic ion and requires high levels of iron for growth, has the active uptake system but cannot synthesize a specific chelator for iron, 2,3-dihydroxybenzoylserine (DHBS). Evidence is presented to support the hypothesis that both the active uptake system and chelation of iron by DHBS play a role in iron uptake from iron-deficient medium. The chromium sensitivity of the mutants can be explained by inhibition of uptake of exogenous iron.  相似文献   

9.
Abstract Under low-iron conditions, Escherichia coli synthesizes the siderophore enterobactin. When compared to wild-type cells grown in iron sufficient medium, cells grown under iron limitation, in the absence of tyrosine and phenylalanine or the presence of both, increased catechol production (a measure of enterobactin and its degradation product 2,3-dihydroxybenzoic acid) 5- to 9-fold while cells supplemented with tyrosine alone produced a 10- to 20-fold increase. Mutations in fur , tyrA , pheA , or pheU generally resulted in increased enterobactin production, while a tyrR mutant was unaffected by combinations of tyrosine and phenylalanine.  相似文献   

10.
Pyochelin is an iron-binding compound produced by Pseudomonas aeruginosa and demonstrates siderophore activity by its involvement in iron transport. During the transport process, an energy-independent association of [55Fe]ferripyochelin with bacteria occurred within the initial 30 s of reaction, followed by an energy-dependent accumulation of iron. The energy-independent association with iron appeared to be at the surface of the bacteria because the iron could be washed from the cells with thioglycolate, whereas accumulated iron was not washed from the bacteria. Energy-independent association of iron with bacteria and energy-dependent accumulation of iron in the presence of ferripyochelin varied concomitantly in cells grown under various conditions, but pyochelin synthesis appeared to be controlled separately. 55Fe complexed with citrate was also taken up by P. aeruginosa with a lower level of initial cell association. Bacterial mechanisms for iron uptake from ferric citrate were present in cells grown in a variety of media and were in lowest levels in cells grown in citrate. The synthesis of bacterial components for iron uptake from ferric citrate and from ferripyochelin was inhibited by high concentrations of iron supplied in growth media.  相似文献   

11.
Temporal expression patterns of the Bordetella pertussis alcaligin, enterobactin and haem iron acquisition systems were examined using alcA-, bfeA- and bhuR-tnpR recombinase fusion strains in a mouse respiratory infection model. The iron systems were differentially expressed in vivo, showing early induction of the alcaligin and enterobactin siderophore systems, and delayed induction of the haem system in a manner consistent with predicted changes in host iron source availability during infection. Previous mixed infection competition studies established the importance of alcaligin and haem utilization for B. pertussis in vivo growth and survival. In this study, the contribution of the enterobactin system to the fitness of B. pertussis was confirmed using wild-type and enterobactin receptor mutant strains in similar competition infection experiments. As a correlate to the in vivo expression studies of B. pertussis iron systems in mice, sera from uninfected and B. pertussis-infected human donors were screened for antibody reactivity with Bordetella iron-repressible cell envelope proteins. Pertussis patient sera recognized multiple iron-repressible proteins including the known outer membrane receptors for alcaligin, enterobactin and haem, supporting the hypothesis that B. pertussis is iron-starved and responds to the presence of diverse iron sources during natural infection.  相似文献   

12.
F Rusnak  W S Faraci  C T Walsh 《Biochemistry》1989,28(17):6827-6835
The gene coding for the enzyme 2,3-dihydroxybenzoate-AMP ligase (2,3DHB-AMP ligase), responsible for activating 2,3-dihydroxybenzoic acid in the biosynthesis of the siderophore enterobactin, has been subcloned into the multicopy plasmid pKK223-3 and overproduced in a strain of Escherichia coli. The protein is an alpha 2 dimer with subunit molecular mass of 59 kDa. The enzyme catalyzes the exchange of [32P]pyrophosphate with ATP, dependent upon aromatic substrate with a turnover number of 340 min-1. The enzyme also releases pyrophosphate upon incubation with 2,3-dihydroxybenzoic acid and ATP; an initial burst corresponding to 0.7 nmol of pyrophosphate released per nanomole of enzyme is followed by a slower, continuous release with a turnover number of 0.41 min-1. The 1000-fold difference in rates observed between ATP-pyrophosphate exchange and continuous pyrophosphate release, as well as the close to stoichiometric amount of pyrophosphate released, suggests that intermediates are accumulating on the enzyme surface. Such intermediates have been observed and correspond to enzyme-bond (2,3-dihydroxybenzoyl)adenylate product.  相似文献   

13.
2,3-Dihydroxybenzoate-2,3-oxygenase is mainly localized in the soluble and the chloroplast fractions of Tecoma leaves. It is associated with the lamellar structure of the chloroplast fraction. The chloroplast enzyme has properties similar to those of the soluble enzyme, but it has a longer half-life and is more stable to dialysis than the soluble enzyme. It is inhibited by sulfhydryl reagents and the inhibition is reversed by the addition of reduced glutathione. The chloroplast enzyme is insensitive to iron-chelating agents. The enzyme loses activity on dialysis against copper-chelating agents and the activity is completely recovered on the addition of copper; addition of iron does not restore the activity. Polyphenol oxidase is probably present only in the active form in the Tecoma chloroplast but it is not involved in the intradiol cleavage of 2,3-dihydroxybenzoic acid.  相似文献   

14.
Characterisation of a siderophore from Acinetobacter calcoaceticus   总被引:4,自引:0,他引:4  
Abstract The Gram-negatice bacterium Acinetobacter calcoaceticus was examined for production of siderophores and iron-repressible outer membrane proteins following growth in iron-restricted media. The iron chelator, 2,3-dihydroxybenzoic acid was identified in the culture supernatant bu 1H nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). A group of outer membrane proteins between 80 and 85 kDa were induced under iron restriction.  相似文献   

15.
The activity and expression of indoleamine 2,3-dioxygenase together with l-tryptophan transport has been examined in cultured human breast cancer cells. MDA-MB-231 but not MCF-7 cells expressed mRNA for indoleamine 2,3-dioxygenase. Kynurenine production by MDA-MB-231 cells, which was taken as a measure of enzyme activity, was markedly stimulated by interferon-γ (1000 units/ml). Accordingly, l-tryptophan utilization by MDA-MB-231 cells was enhanced by interferon-γ. 1-Methyl-dl-tryptophan (1 mM) inhibited interferon-γ induced kynurenine production by MBA-MB-231 cells. Kynurenine production by MCF-7 cells remained at basal levels when cultured in the presence of interferon-γ. l-Tryptophan transport into MDA-MB-231 cells was via a Na+-independent, BCH-sensitive pathway. It appears that system L (LAT1/CD98) may be the only pathway for l-tryptophan transport into these cells. 1-Methyl-d,l-tryptophan trans-stimulated l-tryptophan efflux from MDA-MB-231 cells and thus appears to be a transported substrate of system L. The results suggest that system L plays an important role in providing indoleamine-2,3-dioxygenase with its main substrate, l-tryptophan, and suggest a mechanism by which estrogen receptor-negative breast cancer cells may evade the attention of the immune system.  相似文献   

16.
When a strain (arcB-) of Escherichia coli, unable to synthesize the iron transport compound enterochelin, was transduced to tonB-, it became resistant to phage phi80 and simultaneously lost the growth response to enterochelin and the ability to transport its iron complex. However, enterochelin precursors (shikimate and 2,3-dihydroxybenzoate) still supported growth, via the synthesis of enterochelin. Dihydroxybenzoate was a better growth factor at a low concentration than it was at higher levels. The evidence suggests that tonB- strains lack an outer membrane component necessary both for the uptake of ferric-enterochelin and for the adsorption of phage phi80. Thus, although ferric-enterochelin cannot penetrate the cell surface from outside, the complex that is formed within the envelope is transported normally into the cell. The aroB-, tonB- mutant also lacked growth reponses to citrate and various hydroxamate siderochromes, which supported growth in the tonB+ parent strain via inducible transport systems for their ferric complexes. The aroB-, tonB- mutant was unable to transport iron in the presence of citrate, but the low-affinity uptake of uncomplexed iron and the transport of amino acids and phosphate were unimpaired. The tonB locus, thus, affects all the known active transport systems for iron, possibly indicating that they share some common outer membrane component.  相似文献   

17.
In addition to the two siderophores pyoverdine and pyochelin synthesized by Pseudomonas aeruginosa ATCC 15692 (strain PAO1), several siderophores produced by other bacteria or fungi, namely cepabactin, salicylic acid, desferriferrichrysin, desferriferricrocin, desferriferrioxamine B, desferriferrioxamine E and coprogen, were able to promote iron uptake with variable efficiencies into this bacterium. For most of these siderophores, these results were consistent with the growth stimulation produced by the same compounds in a plate bioassay. Desferriferrichrome A, enterobactin and desferriferrirubin, however, did not promote iron uptake, although enterobactin and desferriferrirubin stimulated bacterial growth. These paradoxical data are discussed in view of siderophore-inducible iron uptake systems, as demonstrated recently for enterobactin. Among the strains tested, including the wild-type PAO1, the pyoverdine-less mutant PAO6606 and the two porin-mutants P. aeruginosa H636 (oprF::omega) and P. aeruginosa H673 (oprD::Tn501), only for the porin-OprF mutant were fewer siderophores able to promote iron uptake compared to the other strains. Such results suggest that beside specific routes for iron uptake P. aeruginosa is also able to take up siderophore-liganded iron through OprF.  相似文献   

18.
Glucose transport by Pseudomonas aeruginosa was studied. These studies were enhanced by the use of a mutant, strain PAO 57, which was unable to grow on glucose but which formed the inducible glucose transport system when grown in media containing glucose or other inducers such as 2-deoxy-d-glucose. Both PAO 57 and parental strain PAO transported glucose with an apparent K(m) of 7 muM. Free glucose was concentrated intracellularly by P. aeruginosa PAO 57 over 200-fold above the external level. These data constitute direct evidence that glucose is transported via active transport by P. aeruginosa. Various experimental data clearly indicated that P. aeruginosa PAO transported methyl alpha-d-glucose (alpha-MeGlc) via the glucose transport system. The apparent K(m) of alpha-MeGlc transport was 7 mM which indicated a 1,000-fold lower affinity of the glucose transport system for alpha-MeGlc than for glucose. While only unchanged alpha-MeGlc was detected intracellularly in P. aeruginosa, alpha-MeGlc was actually concentrated intracellularly less than 2-fold over the external level. Membrane vesicles of P. aeruginosa PAO retained transport activity for gluconate. This solute was concentrated intravesicularly several-fold over the external level. A component of the glucose transport system is believed to have been lost during vesicle preparation since glucose per se was not transported. Instead; glucose was converted to gluconate by membrane-associated glucose dehydrogenase and gluconate was then transported into the vesicles. Although this may constitute an alternate system for glucose transport, it is not a necessary prerequisite for glucose transport by intact cells since P. aeruginosa PAO 57, which lacks glucose dehydrogenase, was able to transport glucose at a rate equal to the parental strain.  相似文献   

19.
We report here that Vibrio anguillarum possesses a non-inducible active transport system which can efficiently supply iron to the cell from ferric citrate, independently of the siderophore-based mechanisms. The strains tested were able to grow in CM9 medium in iron-restricted conditions when ferric citrate was present in the medium. Moreover, the presence of ferric citrate inhibited the production of siderophores in the strains tested. V. anguillarum cells and isolated membranes could incorporate 55Fe3+ complexed by citrate, without a difference between cells grown in the presence or absence of ferric citrate. The presence of 2,4-dinitrophenol, ferrozine, ferricyanide, trypsin, as well as low temperature produced a marked decrease or total inhibition of 55Fe3+ uptake by the cells. All these results suggest that iron uptake from ferric citrate in V. anguillarum must be an energy-dependent process not induced by the presence of iron or citrate in the medium, mediated by a membrane protein(s), which may require an iron reduction step to function.  相似文献   

20.
The ability of Haemophilus influenzae, H. parainfluenzae and H. paraphrophilus to utilize iron complexes, iron-proteins and exogenous microbial siderophores was evaluated. In a plate bioassay, all three species used not only ferric nitrate but also the iron chelates ferric citrate, ferric nitrilotriacetate and ferric 2,3-dihydroxybenzoate. Each Haemophilus species examined also used haemin, haemoglobin and haem-albumin as iron sources although only H. influenzae could acquire iron from transferrin or from haemoglobin complexed with haptoglobin. None of the haemophili obtained iron from ferritin or lactoferrin or from the microbial siderophores aerobactin or desferrioxamine B. However, the phenolate siderophore enterobactin supplied iron to both H. parainfluenzae and H. paraphrophilus, and DNA isolated from both organisms hybridized with a DNA probe prepared from the Escherichia coli ferric enterobactin receptor gene fepA. In addition, a monospecific polyclonal antiserum raised against the E. coli 81 kDa ferric enterobactin receptor (FepA) recognized an iron-repressible outer membrane protein (OMP) in H. parainfluenzae of between 80 and 82 kDa (depending on the strain). This anti-FepA serum did not cross-react with any of the OMPs of H. paraphrophilus or H. influenzae. The OMPs of each Haemophilus species were also probed with antisera raised against the 74 kDa Cir or 74 kDa IutA (aerobactin receptor) proteins of E. coli. Apart from one H. parainfluenzae strain (NCTC 10665), in which an OMP of about 80 kDa cross-reacted with the anti-IutA sera, no cross-reactivity was observed between Cir, IutA and the OMPs of H. influenzae, H. parainfluenzae or H. paraphrophilus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号