首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract.— Models allowing the coexistence of females and hermaphrodites in gynodioecious populations assume a simple genetic system of sex determination, a seed fitness advantage of females (compensation), and a negative pleiotropic effect of nuclear sex-determining genes on fitness (cost of restoration). In Lobelia siphilitica , sex is determined by both mitochondrial genes causing cytoplasmic male sterility (CMS) and nuclear genes that restore fertility when present with specific CMS haplotypes (nuclear restorers). I tested for a cost of restoration in L. siphilitica by measuring restored hermaphrodites for five fitness components and estimating the number of nuclear restorers by crosses with females carrying CMS1 and CMS2. A cost of restoration appears as a significant negative coefficient (B) in the regression model explaining fitness. I found that hermaphrodites carrying more nuclear restorer genes for CMS2 (or restorer genes of greater effect) have lower pollen viability (B =– 1.08, P = 0.001). This pollen viability cost of restoration in L. siphilitica supports the theoretical prediction that negative pleiotropic effects of restorers will exist in populations of gynodioecious species containing females. The existence of such a cost supports the view that gynodioecy can be a stable breeding system in nature.  相似文献   

2.
Male fertility in Plantago lanceolata is controlled by the interaction of cytoplasmic and nuclear genes. Different cytoplasmic male sterility (CMS) types can be either male sterile or hermaphrodite, depending on the presence of nuclear restorer alleles. In three CMS types of P. lanceolata (CMSI, CMSIIa, and CMSIIb) the number of loci involved in male fertility restoration was determined. In each CMS type, male fertility was restored by multiple genes with either dominant or recessive action and capable either of restoring male fertility independently or in interaction with each other (epistasis). Restorer allele frequencies for CMSI, CMSIIa and CMSIIb were determined by crossing hermaphrodites with ``standard' male steriles. Segregation of male steriles vs. non-male steriles was used to estimate overall restorer allele frequency. The frequency of restorer alleles was different for the CMS types: restorer alleles for CMSI were less frequent than for CMSIIa and CMSIIb. On the basis of the frequencies of male steriles and the CMS types an ``expected' restorer allele frequency could be calculated. The correlation between estimated and expected restorer allele frequency was significant.  相似文献   

3.
Nuclear-cytoplasmic gynodioecy is a breeding system of plants in which females and hermaphrodites co-occur in populations, and gender is jointly determined by cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. Persistent polymorphism at both CMS and nuclear-restorer loci is necessary to maintain this breeding system. Theoretical models have explained how nuclear-cytoplasmic gynodioecy can be stable for certain assumptions. However, recent advances in our understanding of the genetics, population biology, and molecular mechanisms of sex determination in nuclear-cytoplasmic gynodioecious species suggest the utility of new models with different underlying assumptions. In this article, we examine different negative pleiotropic fitness effects of nuclear restorers (costs of restoration) using genetic and population assumptions based on recent literature. Specifically, we model populations with two CMS types and separate nuclear restorer loci for each CMS type. Under these assumptions, both overdominance for fitness and frequency-dependent selection at nuclear-restorer loci can support nuclear-cytoplasmic gynodioecy. Costs of restoration can be either dependent or independent of the cytoplasmic background. Seed fitness costs are more vulnerable to fixation of CMS types than pollen costs. Survivorship costs are effective at maintaining polymorphism even when total reproductive effects are low. Overall, our models display differences in the stability of nuclear-cytoplasmic gynodioecy and predicted population sex ratios that should be informative to researchers studying gynodioecy in the wild.  相似文献   

4.
Plant mating systems are known to influence population genetic structure because pollen and seed dispersal are often spatially restricted. However, the reciprocal outcomes of population structure on the dynamics of polymorphic mating systems have received little attention. In gynodioecious sea beet (Beta vulgaris ssp. maritima), three sexual types co‐occur: females carrying a cytoplasmic male sterility (CMS) gene, hermaphrodites carrying a non‐CMS cytoplasm and restored hermaphrodites that carry CMS genes and nuclear restorer alleles. This study investigated the effects of fine‐scale genetic structure on male reproductive success of the two hermaphroditic forms. Our study population was strongly structured and characterized by contrasting local sex‐ratios. Pollen flow was constrained over short distances and depended on local plant density. Interestingly, restored hermaphrodites sired significantly more seedlings than non‐CMS hermaphrodites, despite the previous observation that the former produce pollen of lower quality than the latter. This result was explained by the higher frequency of females in the local vicinity of restored (CMS) hermaphrodites as compared to non‐CMS hermaphrodites. Population structure thus strongly influences individual fitness and may locally counteract the expected effects of selection, suggesting that understanding fine scale population processes is central to predicting the evolution of gender polymorphism in angiosperms.  相似文献   

5.
In many gynodioecious species, cytoplasmic male sterility genes (CMS) and nuclear male fertility restorers (Rf) jointly determine whether a plant is female or hermaphrodite. Equilibrium models of cytonuclear gynodioecy, which describe the effect of natural selection within populations on the sex ratio, predict that the frequency of females in a population will primarily depend on the cost of male fertility restoration, a negative pleiotropic effect of Rf alleles on hermaphrodite fitness. Specifically, when the cost of restoration is higher, the frequency of females at equilibrium is predicted to be higher. To test this prediction, we estimated variation in the cost of restoration across 26 populations of Lobelia siphilitica, a species in which Rf alleles can have negative pleiotropic effects on pollen viability. We found that L. siphilitica populations with many females were more likely to contain hermaphrodites with low pollen viability. This is consistent with the prediction that the cost of restoration is a key determinant of variation in female frequency. Our results suggest that equilibrium models can explain variation in sex ratio among natural populations of gynodioecious species.  相似文献   

6.
In many gynodioecious species, sex determination involves both cytoplasmic male‐sterility (CMS) genes and nuclear genes that restore male function. Differences in fitness among genotypes affect the dynamics of those genes, and thus that of gynodioecy. We used a molecular marker to discriminate between hermaphrodites with and without a CMS gene in gynodioecious Raphanus sativus. We compared fitness through female function among the three genotypes: females, hermaphrodites with the CMS gene and those without it. Although there was no significant difference among the genotypes in seed size, hermaphrodites without the CMS gene produced significantly more seeds, and seeds with a higher germination rate than the other genotypes, suggesting no fitness advantage for females and no benefit to bearing the CMS gene. Despite the lack of fitness advantage for females in the parameter values we estimated, a theoretical model of gynodioecy shows it can be maintained if restorer genes impose a cost paid in pollen production. In addition, we found that females invest more resources into female reproduction than hermaphrodites when they become larger. If environmental conditions enable females to grow larger this would facilitate the dynamics of CMS genes.  相似文献   

7.
Gynodioecy, the coexistence of hermaphrodites and male steriles, is frequent in populations of Plantago lanceolata L. A condition for the maintenance of gynodioecy in an obligatory outbreeding species like this is an increase in female fitness in male steriles compared with hermaphrodites. One of the possible underlying mechanisms, a lower cyanide-resistant respiration in male steriles, which could lead to a higher metabolic efficiency, was investigated. For the experiments adult plants were used, because the effects which compensate for male sterility have been found in characters like seed production and longevity. No general correlation between sex phenotype and cyanide-resistant respiration capacity, or with any other respiration component, was found. Only in a single cross a strong correlation between cyanide-resistant respiration activity and sex phenotype was established, male steriles possessing the higher activity. The conclusion from these experiments is that there is no pleiotropic relationship between respiration levels and sex phenotype. The strongly significant correlation mentioned is ascribed to chromosomal linkage.  相似文献   

8.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

9.
Bailey MF  Delph LF 《Genetics》2007,176(4):2465-2476
Gynodioecious plant species, which have populations consisting of female and hermaphrodite individuals, usually have complex sex determination involving cytoplasmic male sterility (CMS) alleles interacting with nuclear restorers of fertility. In response to recent evidence, we present a model of sex-ratio evolution in which restoration of male fertility is a threshold trait. We find that females are maintained at low frequencies for all biologically relevant parameter values. Furthermore, this model predicts periodically high female frequencies (>50%) under conditions of lower female seed fecundity advantages (compensation, x = 5%) and pleiotropic fitness effects associated with restorers of fertility (costs of restoration, y = 20%) than in other models. This model explains the maintenance of females in species that have previously experienced invasions of CMS alleles and the evolution of multiple restorers. Sensitivity of the model to small changes in cost and compensation values and to initial conditions may explain why populations of the same species vary widely for sex ratio.  相似文献   

10.
Variation among individuals in reproductive success is advocated as a major process driving evolution of sexual polymorphisms in plants, such as gynodioecy where females and hermaphrodites coexist. In gynodioecious Beta vulgaris ssp. maritima, sex determination involves cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. Both restored CMS and non-CMS hermaphrodites co-occur. Genotype-specific differences in male fitness are theoretically expected to explain the maintenance of cytonuclear polymorphism. Using genotypic information on seedlings and flowering plants within two metapopulations, we investigated whether male fecundity was influenced by ecological, phenotypic and genetic factors, while taking into account the shape and scale of pollen dispersal. Along with spatially restricted pollen flow, we showed that male fecundity was affected by flowering synchrony, investment in reproduction, pollen production and cytoplasmic identity of potential fathers. Siring success of non-CMS hermaphrodites was higher than that of restored CMS hermaphrodites. However, the magnitude of the difference in fecundity depended on the likelihood of carrying restorer alleles for non-CMS hermaphrodites. Our results suggest the occurrence of a cost of silent restorers, a condition supported by scarce empirical evidence, but theoretically required to maintain a stable sexual polymorphism in gynodioecious species.  相似文献   

11.
In gynodioecious species, in which hermaphroditic and female plants co-occur, the maintenance of sexual polymorphism relies on the genetic determination of sex and on the relative fitness of the different phenotypes. Flower production, components of male fitness (pollen quantity and pollen quality) and female fitness (fruit and seed set) were measured in gynodioecious Beta vulgaris spp. maritima, in which sex is determined by interactions between cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. The results suggested that (i) female had a marginal advantage over hermaphrodites in terms of flower production only, (ii) restored CMS hermaphrodites (carrying both CMS genes and nuclear restorers) suffered a slight decrease in fruit production compared to non-CMS hermaphrodites and (iii) restored CMS hermaphrodites were poor pollen producers compared to non-CMS hermaphrodites, probably as a consequence of complex determination of restoration. These observations potentially have important consequences for the conditions of maintenance of sexual polymorphism in B. vulgaris and are discussed in the light of existing theory on evolutionary dynamics of gynodioecy.  相似文献   

12.
In gynodioecious plants, seed offspring from hermaphrodites often perform less well than those from females. This lower performance sometimes can be attributed to inbreeding by hermaphrodites or to relatively greater provisioning of individual seeds by females. However, these hypotheses are not explanatory when only outcrossing occurs and when individual seeds of the two morphs are equally well provisioned. Three hypotheses may explain the lower fitness of seed offspring from hermaphrodites in such cases. The morphology hypothesis states that the opportunity for gametophytic selection is lower within flowers of hermaphrodites compared to flowers on females, because the perfect flowers of hermaphrodites are relatively short-styled. The cytotype hypothesis states that the performance difference is directly caused by an individual's cytotype, whose frequency in the population may differ for the two sex morphs. The pleiotropy hypothesis states that negative pleiotropic effects of nuclear restorer alleles or alleles hitchhiking with them are expressed more often by offspring from hermaphrodites. We performed two experiments using the gynodioecious plant Silene acaulis to contrast these hypotheses. In our first experiment we contrasted the morphology and pleiotropy hypotheses by performing controlled pollinations and subsequently planting seeds in both the greenhouse and field. Hermaphrodites of S. acaulis can produce both pistillate and perfect flowers, which allowed us to determine whether flower morphology affects offspring survivorship independent of the sex of the maternal parent. We found that neither seed mass nor germination differed between seeds from females and hermaphrodites. Offspring from pistillate flowers on hermaphrodites did not differ significantly in their survival compared to offspring from perfect flowers on hermaphrodites, but had lower survivorship compared to offspring from pistillate flowers on females, refuting the morphology hypothesis. In a second experiment, we compared offspring survival of full-sibling pairs of females and hermaphrodites (who shared the same cytoplasm) to contrast the cytotype and pleiotropy hypotheses. We found that seed offspring from females and hermaphrodites that shared the same cytoplasm differed in their survival, which is counter to the prediction of the cytotype hypothesis. In both experiments, the sex of the maternal parent significantly affected offspring survival, with seed offspring from hermaphrodites surviving less well than those from females. These results support the pleiotropy hypothesis. We conclude by discussing alternative ways of thinking about negative pleiotropic effects of nuclear restorers or "the cost of restoration."  相似文献   

13.
Cytoplasmic male sterility (CMS) in plants often results in gynodioecious populations, composed of hermaphrodites and male-sterile females. All models of gynodioecy assume maternal inheritance of the cytoplasmic alleles and postulate a variety of negatively frequency-dependent mechanisms to maintain the cytoplasmic polymorphisms observed in many natural populations. However, in some plant species, mitochondria are transmitted at least occasionally by pollen, a process called paternal leakage. We show that even a small amount of paternal leakage is sufficient to sustain a permanent, stable cytoplasmic polymorphism. Because only hermaphrodites provide pollen in gynodioecious species, the effects of paternal leakage are biased and occur more often from the non-CMS male-fertile haplotype to the CMS male-sterile haplotype. We also show that a nuclear restorer disrupts the polymorphic cytoplasmic equilibrium, leading to fixation of both the CMS allele and the restorer. Although a dominant nuclear restorer fixes, it fixes much more slowly than in the standard CMS models. Although a stable cytonuclear polymorphism is possible with "matching alleles" nuclear restoration, oscillations to low frequencies present a risk of loss by drift. Paternal leakage enhances the stability of joint cytonuclear polymorphism by reducing the chance that a CMS allele is lost by drift.  相似文献   

14.
In gynodioecious species, females and hermaphrodites coexist and the genetics of sex determination is usually nuclear cytoplasmic. Maintaining nuclear-cytoplasmic gynodioecy requires polymorphism for the feminizing genes (contained in the mitochondria) and the genes that restore male fertility (contained in the nucleus). This complex polymorphism depends, in part, on there being negative pleiotropic effects (i.e. costs) of the nuclear restorer alleles. Here, we combine information from theoretical studies and studies on the molecular action of restorer alleles in crops to interpret the probable costs of such alleles, and suggest how various aspects of the theoretical models could be tested. In doing so, we highlight how crops can be used to address evolutionary questions about the maintenance of nuclear-cytoplasmic gynodioecy.  相似文献   

15.
A negative pleiotropic effect on fitness of nuclear sex‐determining genes (cost of restoration) could explain nuclear–cytoplasmic gynodioecy but rarely has been demonstrated empirically. In a gynodioecious Phacelia dubia population, maternal lineages produce only hermaphroditic progenies irrespective of the pollen parent (N) or can segregate females (S). Natural progenies of N maternal plants had lower seed viability than that of S. Full‐sib progenies of unrelated hermaphrodites from all possible matings between N and S lineages had similar pollen filling but differed in sporophyte performance, mainly at seed germination stage. A discrete multivariate analysis reveals that the performance of N × S progeny at early stages of development was significantly lower than that of the other three types of mating in agreement with the silent‐cost‐of‐restoration hypothesis, affecting the sporophyte. The restoration cost and male sterility appear to be dominant and consequence of nuclear–cytoplasmic incompatibilities that may maintain nuclear–cytoplasmic polymorphism by frequency‐dependent selection.  相似文献   

16.
The mode of inheritance of the male sterility trait is crucial for understanding the evolutionary dynamics of the sexual system gynodioecy, which is the co-occurrence of female and hermaphrodite plants in natural populations. Both cytoplasmic (CMS) and nuclear (restorer) genes are known to be involved. Theoretical models usually assume a limited number of CMS genes with each a single restorer gene, while reality is more complex. In this study, it is shown that in the gynodioecious species Plantago coronopus two new CMS-restorer polymorphisms exist in addition to the two that were already known, which means four CMS-restorer systems at the species level. Furthermore, three CMS types were shown to co-occur within a single population. All new CMS types showed a multilocus system for male fertility restoration, in which both recessive and dominant restorer alleles occur. Our finding of more than two co-occurring CMS-restorer systems each with multiple restorer genes raises the question how this complex of male sterility systems is maintained in natural populations.  相似文献   

17.
Local population structure and sex ratio: evolution in gynodioecious plants   总被引:3,自引:0,他引:3  
Although the influence of population structure on evolution has been explored previously in a variety of theoretical studies, there are few examples of specific traits whose fitness is likely to be modified by the local structure. Here we focus on a specific trait, sex expression in gynodioecious plants, and derive a model in which the fitness of females and hermaphrodites is a function of the local sex ratio. By using the concept d genes. As a consequence, when local demes vary in sex ratio, a polymorphism for a cytoplasmic male sterility (CMS) allele can be maintained in the absence of nuclear alleles that restore male function. When of subjective frequencies, it is shown that among-deme variance in the local sex ratio reduces the average fitness of females when pollen availability limits fertility. In contrast, sex ratio variance increases the fitness of hermaphrodites from the perspective of maternally inherited genes and lessens the negative impact of pollen limitation on hermaphrodite fitness when it is measured from the perspective of biparentally inheriterestorer alleles are introduced into the model, polymorphism cannot be maintained simultaneously at both the cytoplasmic and nuclear loci. In that case, the CMS allele spreads to fixation, and the equilibrium frequency of females is an inverse function of the equilibrium frequency of the restorer allele, which increases with increased structure. The results exemplify how population structure can greatly alter the fitness and evolution of a frequency-dependent trait.  相似文献   

18.
Gynodioecious species are defined by the co-occurrence of two clearly separated categories of plants: females and hermaphrodites. The hermaphroditic category may, however, not be homogeneous, as male fitness may vary among hermaphrodites as a result of many biological factors. In this study, we analysed estimates of pollen quantity and viability in the gynodioecious Beta vulgaris ssp. maritima, comparing hermaphrodites bearing a male-fertile cytotype and hermaphrodites bearing cytoplasmic male sterility (CMS) genes, which are counteracted by nuclear restoration factors. We show that: (i) pollen quantity continuously varies among restored hermaphrodites, suggesting a complex genetic determination of nuclear restoration; (ii) pollen viability was lower in restored (CMS) hermaphrodites than in non-CMS hermaphrodites, probably because of incomplete restoration in some of these plants; and (iii) pollen quantity and viability also varied among hermaphrodites with male-fertile cytotypes, possibly a result of a silent cost of restoration. Finally, we discuss the consequences of these results for pollen flow and the dynamics of gynodioecy.  相似文献   

19.

Background and Aims

Plants exhibit a variety of reproductive systems where unisexual (females or males) morphs coexist with hermaphrodites. The maintenance of dimorphic and polymorphic reproductive systems may be problematic. For example, to coexist with hermaphrodites the females of gynodioecious species have to compensate for the lack of male function. In our study species, Geranium sylvaticum, a perennial gynodioecious herb, the relative seed fitness advantage of females varies significantly between years within populations as well as among populations. Differences in reproductive investment between females and hermaphrodites may lead to differences in future survival, growth and reproductive success, i.e. to differential costs of reproduction. Since females of this species produce more seeds, higher costs of reproduction in females than in hermaphrodites were expected. Due to the higher costs of reproduction, the yearly variation in reproductive output of females might be more pronounced than that of hermaphrodites.

Methods

Using supplemental hand-pollination of females and hermaphrodites of G. sylvaticum we examined if increased reproductive output leads to differential costs of reproduction in terms of survival, probability of flowering, and seed production in the following year.

Key Results

Experimentally increased reproductive output had differential effects on the reproduction of females and hermaphrodites. In hermaphrodites, the probability of flowering decreased significantly in the following year, whereas in females the costs were expressed in terms of decreased future seed production.

Conclusions

When combining the probability of flowering and seed production per plant to estimate the multiplicative change in fitness, female plants showed a 56 % and hermaphrodites showed a 39 % decrease in fitness due to experimentally increased reproduction. Therefore, in total, female plants seem to be more sensitive to the cost of reproduction in terms of seed fitness than hermaphrodites.  相似文献   

20.
In many gynodioecious species the nuclear inheritance of male fertility is complex and involves multiple (restorer) genes. In addition to restoring plants from the female (male sterile) to the hermaphrodite (male fertile) state, these genes are also thought to play a role in the determination of the quantity of pollen produced by hermaphrodites. The more restorer alleles a hermaphroditic plant possesses, the higher the pollen production. To test this hypothesis I combined the results of crossing studies of the genetics of male sterility with phenotypic data on investment in stamens and ovules among the progeny of plants involved in these studies. The sex ratio (i.e. the frequency of hermaphrodites among the progeny), being a measure of the number of restorer alleles of the maternal plant, was positively related to the investment in pollen (male function), but negatively related to the investment in ovules (female function), in both field and greenhouse experiments. Consequently, a negative correlation between male and female function was observed (trade-off) and it is suggested that antagonistic pleiotropic effects of restorer genes might be the cause. Phenotypic gender, a measure combining investment in both pollen and ovules, was highly repeatable between field and greenhouse, indicating genetic determination of a more male- or female-biased allocation pattern among the studied plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号