首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Paternal leakage sustains the cytoplasmic polymorphism underlying gynodioecy but remains invasible by nuclear restorers
Authors:Wade Michael J  McCauley David E
Institution:Department of Biology, Indiana University, Bloomington, Indiana 47405, USA. mjwade@bio.indiana.edu
Abstract:Cytoplasmic male sterility (CMS) in plants often results in gynodioecious populations, composed of hermaphrodites and male-sterile females. All models of gynodioecy assume maternal inheritance of the cytoplasmic alleles and postulate a variety of negatively frequency-dependent mechanisms to maintain the cytoplasmic polymorphisms observed in many natural populations. However, in some plant species, mitochondria are transmitted at least occasionally by pollen, a process called paternal leakage. We show that even a small amount of paternal leakage is sufficient to sustain a permanent, stable cytoplasmic polymorphism. Because only hermaphrodites provide pollen in gynodioecious species, the effects of paternal leakage are biased and occur more often from the non-CMS male-fertile haplotype to the CMS male-sterile haplotype. We also show that a nuclear restorer disrupts the polymorphic cytoplasmic equilibrium, leading to fixation of both the CMS allele and the restorer. Although a dominant nuclear restorer fixes, it fixes much more slowly than in the standard CMS models. Although a stable cytonuclear polymorphism is possible with "matching alleles" nuclear restoration, oscillations to low frequencies present a risk of loss by drift. Paternal leakage enhances the stability of joint cytonuclear polymorphism by reducing the chance that a CMS allele is lost by drift.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号