首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the acceptance and suitability of four aphid species [Aphis gossypii Glover, Myzus persicae (Sulzer), Rhopalosiphum padi (L.), and Schizaphis graminum (Rondani)] (Homoptera: Aphididae) for the parasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Female parasitoids parasitized fewer R. padi than the other three aphid species, and fewer offspring successfully completed development in R. padi than in the other three host species. Sex ratios of emerging adults were more male‐biased from R. padi than from the other three aphid species, suggesting that R. padi is a poor quality host for this population of A. colemani. Ovipositing A. colemani encountered R. padi at a slower rate, spent more time handling R. padi, and parasitoid offspring died at a higher rate in R. padi compared to A. gossypii. Our results show that oviposition behavior and offspring performance are correlated. In each experiment, we tested the effect of the host species in which the parasitoids developed (parental host) on the number of hosts attacked, the proportion of each host species accepted for oviposition and the survival of progeny. Parental host affected maternal body size and, through its effect on body size, the rate of encounter with hosts. Other than this, parental host species did not affect parasitism.  相似文献   

2.
Li Q  Xiao M  Guo L  Wang L  Tang L  Xu Y  Yan F  Chen F 《Biochemical genetics》2005,43(7-8):445-458
The genetic diversity and genetic structure of Trillium tschonoskii (Maxim) were investigated using amplified fragment length polymorphism markers. Eight primer combinations were carried out on 105 different individuals sampled from seven populations. Of the 619 discernible DNA fragments generated, 169 (27.3%) were polymorphic. The percentage of polymorphic bands within populations ranged from 4.52 to 10.50. Genetic diversity (HE) within populations ranged from 0.0130 to 0.0379, averaging 0.0536 at the species level. Genetic differentiation among populations was detected based on Nei's genetic diversity analysis (53.03%) and analysis of molecular variance (AMOVA) (52.43%). AMOVA indicated significant genetic differentiation among populations (52.43% of the variance) and within populations (47.57% of the variance) (p < 0.0002). Gene flow was low (0.4429) among populations. Species breeding system and limited gene flow among populations are plausible reasons for the high genetic differentiation observed for this species. We propose an appropriate strategy for conserving the genetic resources of T. tschonoskii in China.  相似文献   

3.
Pterochloroides persicae (Cholodkovsky) is an aphid species belonging to the subfamily Lachninae that uses different members of Rosaceae (specially Prunus spp.) as hosts. Partial sequences from the mitochondrial cytochrome c oxidase 1 (COI) and the nuclear long‐wave opsin genes were obtained for approximately 100 P. persicae aphid individuals sampled from 34 colonies collected mainly in Tunisia and other Mediterranean locations. The variability found at the mitochondrial locus revealed the presence of two maternal haplotypes in the studied area that differed in a single nucleotide. The nuclear gene analyzed, however, failed to reveal any variability in this species. The variability found at the COI locus was related to the season of aphid sampling and with the site of feeding, with haplotype I mostly detected in samples collected in spring and summer on trunks and branches and haplotype II only detected in aphids collected in autumn on roots. The observed pattern of molecular variation suggests the presence of two clonal races of P. persicae coexisting in the studied area differentially adapted to conditions prevalent in the alternative seasons and/or to different feeding sites.  相似文献   

4.
Glasshouse and field studies were done to determine the relative roles of different colonising and non-colonising aphid species as vectors of two non-persistently transmitted viruses, cucumber mosaic cucumovirus (CMV) and bean yellow mosaic potyvirus (BYMV) in narrow-leafed lupin (Lupinus angustifolius) crops in Australia. The abilities of nine different aphid species in transmitting CMV from infected to healthy lupins and BYMV from infected subterranean clover to healthy lupins were compared in the glasshouse using 5–10 min acquisition access feeds. The percentage transmission efficiencies found with lupin-colonising aphid species were (CMV/BYMV): Acyrthosiphon kondoi (6/15), Aphis craccivora (10/14) and Myzus persicae (11/77). With non-colonising species the respective efficiencies were: Brachycaudus rumexicolens (0.9/0), Lipaphis erysimi (4/8), Rhopalosiphum maidis (9/6), R. padi (5/5), Sitobion miscanthi (2/11) and Therioaphis trifolii (4/5). When flying aphids were trapped in the field in four successive years (1993–1996) on vertical nets downwind of virus-infected lupins, 13 different species were caught at a “wheatbelt” site and 18 at an urban irrigated site. Of 2833 aphids caught at the “wheatbelt” site, 64 transmitted CMV to lupin test plants. At the irrigated site, numbers of aphids transmitting CMV/numbers caught were 12/186 while the corresponding numbers for BYMV were 11/727. M. persicae, A. kondoi and R. padi transmitted both viruses, while additional vectors of CMV found were A. craccivora, Acyrthosiphon pisum, B. rumexicolens, L erysimi, R. insertum, T. trifolii and Toxoptera citricidus. Averaged over four years, A. kondoi accounted for 50% of CMV transmissions at the “wheatbelt” site, M. persicae for 16% and R. padi for 22%, and these three species were caught in the greatest numbers, comprising 28%, 13% and 37% respectively of the total catch. At the irrigated site R. padi accounted for half the CMV transmissions, while R. padi and A. kondoi together accounted for most of the BYMV transmissions. R. padi, A. kondoi, M. persicae and T. citridus were the most common aphid species at this site. These findings suggest that M. persicae, A. kondoi and R. padi are the aphid species likely to be most important as vectors of CMV and BYMV in narrow-leafed lupins grown in mediterranean-type climatic zones of southern Australia.  相似文献   

5.
In insect species characterized by inbreeding, limited dispersal, and a metapopulation structure, high genetic differentiation and reduced genetic diversity within local populations are expected. Using the model system Lysiphlebus hirticornis Mackauer, a specialist parasitoid of the tansy aphid, Metopeurum fuscoviride Stroyan (Hemiptera: Aphididae), we examined within‐site temporal population dynamics and genetics, including molecular variation at the tansy plant level. Aphid‐parasitoid dynamics were surveyed and parasitoids sampled from 72 tansy plants at 11 sites in and around Jena, Germany, over one growing season. Thereafter, parasitoid samples were genotyped at 11 polymorphic microsatellite loci. Colonization, extinction, and recolonization events occurred during the season. Allele numbers and identities were highly variable over time. When samples from all sites were pooled, allele number over all loci showed a decreasing trend with time. At the level of sites, temporal changes in genetic diversity were more variable. Analysis of molecular variance revealed that samples at the plant level explained the highest variance compared to at site level. We conclude that the genetic structuring of this insect is very fine grained (i.e. at the tansy plant level) and the temporal genetic diversity is explained by a combination of extinction and recolonization events, as well as inbreeding. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 737–749.  相似文献   

6.
This study explores the genetic diversity and structure of Meloidogyne enterolobii in mulberry in China. The COI mitochondrial gene (mtCOI) in M.enterolobii populations in Guangdong, Guangxi, and Hunan Provinces was PCR‐amplified, sequenced, and analyzed for genetic diversity. The total number of variations, haplotypes (Hap), the average number of nucleotide differences (k), haplotype diversity (H), and nucleotide diversity (π) of mtCOI were 25, 11, 4.248, 0.900, and 0.00596, respectively. Insignificant differences in Fst value (0.0169) and a high level of gene flow (7.02) were detected among the 19‐mulberry root‐knot nematode populations, and high genetic variation within each population and a small genetic distance among populations were observed. Both phylogenetic analyses and network mapping of the 11 haplotypes revealed a dispersed distribution pattern of 19 mulberry root‐knot nematode populations and an absence of branches strictly corresponding to the 19 range sampling sites. The neutrality test and mismatch analysis indicated that mulberry root‐knot nematode populations experienced a population expansion in the past. The analysis of molecular variance (AMOVA) revealed that the genetic differentiation of M. enterolobii was mainly contributed by the variation within each group. No significant correlation was found between the genetic distance and geographical distance of M. enterolobii populations. The findings of this study provide a profound understanding of the M. enterolobii population and will inform the development of strategies to combat and manage root‐knot nematodes in mulberry.  相似文献   

7.
Bacterial endosymbionts have enabled aphids to adapt to a range of stressors,but their effects in many aphid species remain to be established.The bird cherry-oat aphid,Rhopalosiphum padi(Linnaeus),is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type symbiont endobacteria,although the resulting aphid phenotype has not been described.This study presents the first report of R.padi infection with the facultative bacterial endosymbiont Hamiltonella defensa.Individuals of R.padi were sampled from populations in Eastern Scotland,UK,and shown to represent seven R.padi genotypes based on the size of polymorphic microsatellite markers;two of these genotypes harbored H.defensa.In parasitism assays,survival of H.defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani(Viereck)was 5 fold higher than for uninfected nymphs.Aphid genotype was a major determinant of aphid performance on two Hordeum species,a modern cultivar of barley H.vulgare and a wild relative H.spontaneum,although aphids infected with H.defensa showed 16%lower nymph mass gain on the partially resistant wild relative compared with uninfected individuals.These findings suggest that deploying resistance traits in barley will favor the fittest R.padi genotypes,but symbiontinfected individuals will be favored when parasitoids are abundant,although these aphids will not achieve optimal performance on a poor quality host plant.  相似文献   

8.
Predation by two carabid species,Bembidion lampros (Herbst.) andPterostichus cupreus L., on the cereal aphid,Rhopalsiphum padi L., was described using a discrete event simulation model. The results were incorporated into an aphid population growth model. The aphid model was run using actual temperatures,R. padi emigration rates, field densities and distributions from three years with distinctly different aphid population levels. Predation was incorporated at different time periods. Predation during the arrival of emigrants and establishment of aphid populations had approximately the same effect as predation over the entire aphid period, whereas predation during the 20 days prior to peak had very little effect on resulting peak populations. We conclude that a) yearly levels ofR. padi infestation are mainly determined by the volume and intensity of emigrants; b) peak levels are sensitive to changes in predator density; and c) in some cases an outbreak ofR. padi may be prevented by the action of spring active polyphagous predators alone.  相似文献   

9.
Aphid species within the genus Tuberculatus Mordvilko (Hemiptera: Aphididae) exhibit a variety of interactions with ants, ranging from close associations to non‐attendance. A previous study indicated that despite wing possession, ant‐attended Tuberculatus species exhibited low dispersal rates compared with non‐attended species. This study examined if presence or absence of mutualistic interactions and habitat continuity of host plants affected intraspecific genetic diversity and genetic differentiation in mitochondrial DNA cytochrome oxidase I (COI) sequences. Sympatric ant‐attended Tuberculatus quercicola (Matsumura) (Hemiptera: Aphididae) and non‐attended Tuberculatus paiki Hille Ris Lambers (Hemiptera: Aphididae) were collected from the daimyo oak Quercus dentata Thunberg (Fagales: Fagaceae) in Japan and examined for haplotype variability. Seventeen haplotypes were identified in 568 T. quercicola individuals representing 23 populations and seven haplotypes in 425 T. paiki representing 19 populations. Haplotype diversity, which indicates the mean number of differences between all pairs of haplotypes in the sample, and nucleotide diversity were higher in T. quercicola than T. paiki. Analysis of molecular variance (AMOVA) showed higher genetic differentiation among populations within groups of T. quercicola (39.8%) than T. paiki (22.6%). The effects of attendant ant species on genetic differentiation in T. quercicola were not distinguishable from geographic factors. Despite low dispersal rates, host plant habitat continuity might facilitate widespread dispersal of a T. quercicola haplotype in Hokkaido. These results suggested that following T. quercicola colonization, gene flow among populations was limited, resulting in genetic drift within populations. However, frequent T. paiki dispersal is clearly evident by low genetic differentiation among populations within groups, resulting in lower haplotype diversity.  相似文献   

10.
A technique was developed and deployed in central Illinois to trap and assay aphid alatae for incidence of soybean mosaic virus (SMV) transmission among naturally occurring transient aphid populations downwind of a field of infected soybean. In a 2-yr study, 1709 alate aphids were trapped alive and assayed, 4.2% of which transmitted SMV. Five species of aphids accounted for more than 93% of the transmissions: Aphis craccivora Koch, Macrosiphum euphorbiae (Thomas), Myzus persicae (Sulzer), Rhopalosiphum maidis (Fitch), and Rhopalosiphum padi (L.). At least 55 additional species were assayed, five of which transmitted only once. Others did not transmit. Because virus infection during the early growth stages of soybean increases the loss of yield and the percentage of seed-borne virus, vector species that tend to fly middle to late spring are, from an economic point of view, more important in the spread of SMV. R. maidis flew in mid- to late summer and in autumn. R. padi was not abundant at any time of year and its transmission efficiency was low. M. persicae tended to fly in mid summer. Two species (A. craccivora and M. euphorbiae) which had major flights in late spring and early summer and relatively high transmission efficiencies are potentially important in the economic spread of SMV in central Illinois. A third species, Aphis citricola Van der Goot, may also be important because it flies in late spring and laboratory data suggest it is a relatively efficient vector of SMV. A. citricola was not assayed by our technique because we trapped in the morning and this species appears to fly later in the day.  相似文献   

11.
  1. Cereal aphids, including the bird cherry-oat aphid, Rhopalosiphum padi, and the grain aphid, Sitobion avenae, can transmit viruses that significantly reduce crop yields. To mitigate against yield losses, insecticides are routinely used to manage aphid populations.
  2. Aphids can form relationships with endosymbionts that confer fitness benefits or consequences to the aphid. Recent artificial inoculation experiments indicate that endosymbionts could increase aphid susceptibility to insecticides, but this has not been explored using aphid populations naturally infected with endosymbionts.
  3. Here, we sampled aphids from an important cereal production region in Lower Saxony, Germany. We characterized the endosymbiont profile of these aphid populations and conducted pyrethroid dose–response assays to test the hypothesis that facultative endosymbionts increase aphid susceptibility to insecticides.
  4. We find that the level of insecticide susceptibility is highly variable in S. avenae and we identify populations that are sensitive and tolerant to pyrethroids, including populations collected from the same field. For R. padi, we find evidence for decreased sensitivity to pyrethroids, representing the first report of reduced sensitivity to pyrethroids in R. padi sampled from Central Europe.
  5. We detected high endosymbiont infection frequencies in the aphid populations. 84% of aphids carry one facultative endosymbiont and 9% of aphids carry two facultative endosymbionts. We detected associations with Regiella insecticola, Fukatsia symbiotica, and Hamiltonella defensa. However, we do not identify a link between endosymbiont infection and insecticide susceptibility, indicating that other factors may govern the development of insecticide resistance and the need for alternative management strategies.
  相似文献   

12.
13.
1 Sitobion avenae (F.) is a serious pest in Danish cereal crops. To understand the population genetic structure, aphids were sampled in seven different winter wheat (Triticum sativum Lamarck) fields throughout Denmark. The aphids were genotyped with seven microsatellite markers. In total, 2075 aphids were collected and 1203 of these were genotyped. 2 The Danish S. avenae populations displayed very high genotypic diversity, high percentages of unique genotypes and low linkage disequilibria; this is likely to be a result of genetic recombination encompassed by their holocyclic lifestyle. The populations showed very limited differentiation and no sign of isolation by distance. Almost all the genetic variation was ascribed within the populations rather than between populations, probably due to a high migration rate at approximate 10% per generation. 3 Seasonal changes in clonal diversity and distribution of asexual summer generations of S. avenae within the infestation period in a single winter wheat field were followed over two consecutive years by weekly sampling from 60 plots each of 20 × 20 m. Clonal diversity was high in all samples with no dominant clonal lineages and no significant difference in the genotypic diversity between weeks or between years. However, a temporal genetic differentiation effect, throughout the infestation, suggests that selective factors or high temporal migration play an important role in shaping the genetic structure S. avenae. 4 Analyses of fungal infected and uninfected aphids were performed to test whether some clonal linage were more often infected by fungi from the Entomophthorales under field conditions. In total, 54 progeny from aphids with Entomophthorales were genotyped and compared with 422 uninfected aphid genotypes. The Entomophthorales‐infected aphid genotypes did not cluster out together, suggesting that these fungal pathogens did not affect the population differentiation or clonal distribution of S. avenae in a Danish agroecosystem. 5 Our findings indicate that S. avenae populations can be controlled using conservation biological control  相似文献   

14.
Cucumber mosaic virus (CMV) causes significant damage and yield losses in peppers. The objective of this study is to determine the efficiency of prevalent aphid species occurring in pepper fields to transmit this virus within pepper plants and to identify their vector pressure in order to target the critical species implicated in CMV epidemics spread. Alatae and apterae were monitored in an experimental pepper field in northern Tunisia for 3 years. Sixty-eight species were captured in winged form in yellow water traps. The most abundant species were Myzus persicae, Aphis gossypii, Aphis fabae, Aphis spiraecola, Acyrthosiphon pisum, Metopolophium dirhodum, Rhopalosiphum maidis, Aphis craccivora, Aphis nerii, Hyalopterus pruni, Sitobion avenae and Rhopalosiphum padi constituting 90% of aphid populations in the field. Their temporal dynamic showed a high period of flight activity from April to June and a second peak in September was registered. Two of these species, M. persicae and A. gossypii were also found in their wingless form on pepper leaves with a prevalence of 99.5% and 0.5%, respectively. The 12 most abundant aphid species were tested for their transmission efficiency of CMV (CMV-pepp2 isolate) with A. gossypii as a reference vector. All aphids tested, including colonizing and non-colonizing species on pepper, were verified to be vectors of this isolate. However, significant differences in the transmission efficiency were found between the aphid species (p < .001, SE = 7.29). M. persicae (60%) scored the highest transmission efficiency rate. Additionally, A. fabae solanella (50%) had higher transmission efficiency than the reference vector, A. gossypii (40%). H. pruni (16.67%) was documented as a new CMV vector to pepper. The single-aphid transmission probabilities ranged from 0.7% to 16.7%. The calculated mean Vector Pressure Index (VPI) for these 12 species showed a stronger relationship with the specific aphid population variance (R = 0.89, p < .01) than the variation of the specific single-aphid transmission probabilities (R = 0.62, p < .05). Indeed, for alate non-colonizer vectors, A. spiraecola has recorded the highest mean VPI (27.5), despite its moderate transmission efficiency (23.33%). Nevertheless, for colonizer vectors in both winged and wingless forms, M. persicae had the highest mean VPI (49.26) of all vector species and was mostly present in its apterous form. The 12 vector species contributed to a total mean VPI of 133.48 during the surveyed periods. This research determined key features of CMV epidemiology in pepper crops that might be helpful for CMV disease management at an early stage.  相似文献   

15.
Various historical processes have been put forth as drivers of patterns in the spatial distribution of Amazonian trees and their population genetic variation. We tested whether five widespread tree species show congruent phylogeographic breaks and similar patterns of demographic expansion, which could be related to proposed Pleistocene refugia or the presence of geological arches in western Amazonia. We sampled Otoba parvifolia/glycycarpa (Myristicaceae), Clarisia biflora, Poulsenia armata, Ficus insipida (all Moraceae), and Jacaratia digitata (Caricaceae) across the western Amazon Basin. Plastid DNA (trnH–psbA; 674 individuals from 34 populations) and nuclear ribosomal internal transcribed spacers (ITS; 214 individuals from 30 populations) were sequenced to assess genetic diversity, genetic differentiation, population genetic structure, and demographic patterns. Overall genetic diversity for both markers varied among species, with higher values in populations of shade‐tolerant species than in pioneer species. Spatial analysis of molecular variance (SAMOVA) identified three genetically differentiated groups for the plastid marker for each species, but the areas of genetic differentiation were not concordant among species. Fewer SAMOVA groups were found for ITS, with no detectable genetic differentiation among populations in pioneers. The lack of spatially congruent phylogeographic breaks across species suggests no common biogeographic history of these Amazonian tree species. The idiosyncratic phylogeographic patterns of species could be due instead to species‐specific responses to geological and climatic changes. Population genetic patterns were similar among species with similar biological features, indicating that the ecological characteristics of species impact large‐scale phylogeography.  相似文献   

16.
Defining host ranges in parasitoid insects is important both from a theoretical and an applied point of view. Based on the literature, some species seem able to use a wide range of hosts, while field studies indicate possible local host specialization. In koinobiont endoparasitoid species, such specialization could involve physiological processes. We tested the ability of two strains of the cosmopolitan and polyphagous parasitoid Diaeretiella rapae, to develop in three of its recorded aphid host species. Both strains produced high parasitism rates on the cabbage aphid Brevicoryne brassicae and the green peach aphid Myzus persicae but almost no progeny on the cherry-oat aphid Rhopalosiphum padi. This last species was less attacked by female parasitoids. Moreover, parasitoid eggs and larvae were smaller than in the two other host aphid species and their development was delayed. This abnormal development appeared to be due to an incomplete host regulation process, probably related to the low number and the size of teratocytes produced by D. rapae in R. padi individuals. Such a failure as far as gaining control of the host's metabolism is concerned could play an important role in shaping the host range of parasitoid insects, leading to local variation of the host spectrum in populations from various geographical areas.  相似文献   

17.
Prior to designation as distinct species, an appellation presently in question, the tobacco aphid, Myzus nicotianae Blackman (Homoptera: Aphididae), was classified as a tobacco-feeding form of the green peach aphid, Myzus persicae (Sulzer). In this study, RAPD polymorphisms distinguished members of the Myzus persicae complex (M. persicae and M. nicotianae) from three outgroup Myzus species (M. cerasi (F.), M. hemerocallis Takahashi, and M. varians Davidson). Polymorphisms within the complex did not separate populations on the basis of host association (tobacco versus other host plants) or geographic origin (collections from the United States, Europe, and Japan). Similarly, while GC-MS analysis of cuticular hydrocarbon profiles revealed both developmental and inter-populational differences within the M. persicae complex, it did not separate populations of tobacco feeding aphids from those collected off non-tobacco hosts. Finally, with the exception of their responses to a choice between lettuce and collards, the host preference behavior of a green peach aphid population, a red tobacco aphid population, and a green tobacco aphid population was indistinguishable in host preference experiments. These results add to a growing body of evidence suggesting M. nicotianae and M. persicae are conspecific.  相似文献   

18.
The green peach aphid, Myzus persicae (Sulz.), is polyphagous on over 400 plant species in more than 50 families. Phenotypic plasticity of individuals and genetic variability in the population presumably contribute to this polyphagy. The genetic variability in field populations of M. persicae was assessed with respect to their adaptation to sugar beets and potatoes. An analysis of more than 1 000 clones, sampled during 1980, 1981 and 1982 from different host plants in the field, revealed a wide genetic variability in host plant adaptation to sugar beets as well as to potatoes. Both traits seem to be inherited independently from each other and do not correlate with clone-specific host plant preference of apterous adults. The aphid M. persicae can be characterized as a polyphagous insect species with a wide, continuously distributed variability and a broad phenotypic plasticity. A general differentiation of herbivorous species into generalists and specialists tends to ignore the genetic component in the complex of insect-plant relationships.
Zusammenfassung Die Grüne Pfirsichblattlaus Myzus persicae (Sulz.) lebt polyphag an über 400 Pflanzenarten in mehr als 50 Pflanzenfamilien. Ein breites Nahrungsspektrum einer Art ergibt sich jedoch aus der phänotypischen Plastizität des Individuums oder einer Klonlinie und der genetischen Variabilität der Population. Felpopulationen der Grünen Pfirsichblattlaus wurden auf ihre genetische Variabilität bezüglich der Wirtspflanzenanpassung an Rübe und Kartoffel untersucht. Eine Analyse von mehr als 1 000 Klonen, die über die Jahre 1980, 1981 und 1982 im Rheinland gesammelt wurden, lassen eine breite Variabilität in der Wirtspflanzenanpassung der Population erkennen. Beide Merkmale scheinen unabhängig voneinander vererbt zu werden und zeigen keine Beziehung zum Wirtswahlverhalten adult apterer Läuse der entsprechenden Klone. Die Art M. persicae kann daher charakterisiert werden als eine polyphage Insektenart mit einer breiten genetischen Variabilität und einer grossen phänotypischen Plastizität. Eine generelle Differenzierung von Herbivoren in Generalisten und Spezialisten vernachlässigt die genetische Komponente in der komplexen Beziehung zwischen Insekten un ihren Wirtspflanzen.
  相似文献   

19.
Chen S  Xia T  Chen S  Zhou Y 《Biochemical genetics》2005,43(3-4):189-201
Random amplified polymorphic DNA (RAPD) markers were used to measure genetic diversity of Coelonema draboides (Brassicaceae), a genus endemic to the Qilian Mountains of the Qinghai-Tibet Plateau. We sampled 90 individuals in 30 populations of Coelonema draboides from Datong and Huzhu counties of Qinghai Province in P.R. China. A total of 186 amplified bands were scored from the 14 RAPD primers, with a mean of 13.3 amplified bands per primer, and 87% (161 bands) polymorphic bands (PPB) was found. Analysis of molecular variance (AMOVA) shows that a large proportion of genetic variation (84.2%) resides among individuals within populations, while only 15.8% resides among populations. The species shows higher genetic diversity between individuals than other endemic and endangered plants. The RAPDs provide a useful tool for assessing genetic diversity of rare, endemic species and for resolving relationships among populations. The results show that the genetic diversity of this species is high, possibly allowing it to adapt more easily to environmental variations. The main factor responsible for the high level of differentiation within populations and the low level of diversity among populations is probably the outcrossing and long-lived nature of this species. Some long-distance dispersal, even among far separated populations, is also a crucial determinant for the pattern of genetic variation in the species. This distributive pattern of genetic variation of C. draboides populations provides important baseline data for conservation and collection strategies for the species. It is suggested that only populations in different habitats should be studied and protected, not all populations, so as to retain as much genetic diversity as possible.  相似文献   

20.
The acquisition and transmission of cauliflower mosaic virus (CaMV) by six aphid species and three clones of aphids was studied and compared with that of turnip mosaic virus (TuMV) with Myzus persicae. Two clones of Aphis fabae were unable to transmit CaMV, but the other species, Acyrthosiphon pisum, Brevicoryne brassicae, Megoura viciae, M. persicae and Rhopalosiphum padi transmitted in a bior multi-phasic manner. There was no statistical evidence of a bimodal transmission pattern. R. padi is recorded as a vector of CaMV for the first time. The transmission efficiency of CaMV varied with time of acquisition and suggested that accumulation of the virus occurred with two peaks of efficiency within the anterior region of the insect gut. The time at which these two peaks occurred varied between the species, but the basic pattern was common to all transmitting aphid species in this study. This pattern contrasted with that of TuMV. The transmission data are discussed in terms of bimodal transmission, the influence of feeding behaviour, the role of a helper protein associated with both TuMV and CaMV and the evidence for site specific attachment of CaMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号