首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Nine polymorphic microsatellite loci were isolated from the specialist aphid parasitoid, Lysiphlebus hirticornis. In addition, two published loci from closely related Lysiphlebus species were also used. Allelic diversity and heterozygosity were quantified in samples collected from eight tansy plants growing in an area of approximately 150 m2 in Jena, Germany.  相似文献   

2.
We investigated population dynamics, genetic diversity and spatial structure in the aphid species Macrosiphoniella tanacetaria, a specialist herbivore feeding on tansy, Tanacetum vulgare. Tansy plants (genets) consist of many shoots (ramets), and genets are grouped in sites. Thus, aphids feeding on tansy can cluster at the level of ramets, genets and sites. We studied aphid population dynamics in 1997 and 2001 and found that within sites: (i). at any time, aphids used only a fraction of the available ramets and genets; (ii). at the level of ramets, most aphid colonies survived only one week; (iii). at the level of genets, mean survival time was less than 4 weeks; and (iv). colonization and extinction events occurred throughout the season. We sampled aphids in seven sites in the Alsace region, France (4-45 km apart) and two sites in Germany in 1999 to study genetic structure within and between populations. Genetic analyses using nine microsatellite loci showed that: (i). genotypic variability was high, (ii). none of the populations was in Hardy-Weinberg equilibrium, (iii). heterozygote deficits and linkage disequilibria were frequent, and (iv). all populations were genetically differentiated, even at a small geographical scale. Renewed sampling of the Alsace sites in 2001 showed that three populations had become extinct and significant genetic changes had occurred in the remaining four populations. The frequencies of extinction and colonization events at several spatial scales suggest a hierarchical metapopulation structure for M. tanacetaria. Frequent population turnover and drift are likely causes for the genetic differentiation of M. tanacetaria populations.  相似文献   

3.
In the interaction between two ecologically-associated species, the population structure of one species may affect the population structure of the other. Here, we examine the population structures of the aphid Metopeurum fuscoviride, a specialist on tansy Tanacetum vulgare, and its specialist primary hymenopterous parasitoid Lysiphlebus hirticornis, both of which are characterized by multivoltine life histories and a classic metapopulation structure. Samples of the aphid host and the parasitoid were collected from eight sites in and around Jena, Germany, where both insect species co-occur, and then were genotyped using suites of polymorphic microsatellite markers. The host aphid was greatly differentiated in terms of its spatial population genetic patterning, while the parasitoid was, in comparison, only moderately differentiated. There was a positive Mantel test correlation between pairwise shared allele distance (DAS) of the host and parasitoid, i.e. if host subpopulation samples were more similar between two particular sites, so were the parasitoid subpopulation samples. We argue that while the differences in the levels of genetic differentiation are due to the differences in the biology of the species, the correlations between host and parasitoid are indicative of dependence of the parasitoid population structure on that of its aphid host. The parasitoid is genetically tracking behind the aphid host, as can be expected in a classic metapopulation structure where host persistence depends on a delay between host and parasitoid colonization of the patch. The results may also have relevance to the Red Queen hypothesis, whereupon in the 'arms race' between parasitoid and its host, the latter 'attempts' to evolve away from the former.  相似文献   

4.
In cyclical parthenogens, clonal diversity is expected to decrease due to selection and drift during the asexual phase per number of asexual generations. The decrease in diversity may be counteracted by immigration of new genotypes. We analysed temporal variation in clonal diversity in colonies of the monophagous tansy aphid, Macrosiphoniella tanacetaria (Kaltenbach), sampled four times over the course of a growing season. In a related field study, we recorded aphid colony sizes and the occurrence of winged dispersers throughout the season. The number of colonies increased from April, when asexual stem mothers hatched from the sexually produced eggs, to the end of June. The proportion of colonies with winged individuals also increased over this period. After a severe reduction in colony sizes in late summer, a second expansion phase occurred in October when sexuals were produced. At the season's end, the only winged forms were males. A linked genetic study showed that the number of microsatellite multilocus genotypes and genetic variability assessed at three polymorphic loci per colony decreased from June to October. Overall, the relatedness of wingless to winged individuals within colonies was lower than average relatedness among wingless individuals, suggesting that winged forms mainly originated in different colonies. The results demonstrate that patterns of genetic diversity within colonies can be explained by the antagonistic forces of clonal selection, migration and genetic drift (largely due to midsummer population bottlenecks). We further suggest that the males emigrate over comparatively longer distances than winged asexual females.  相似文献   

5.
Loss of genetic diversity is thought to lead to increased risk of extinction in endangered populations due to decreasing fitness of homozygous individuals. Here, we evaluated the presence of inbreeding depression in a long‐lived seabird, the European shag (Phalacrocorax aristotelis), after a severe decline in population size by nearly 70%. During three reproductive seasons, 85 breeders were captured and genotyped at seven microsatellite loci. Nest sites were monitored during the breeding season to estimate reproductive success as the number of chicks surviving to full‐size‐grown per nest. Captured birds were tagged with a ring with an individual code, and resighting data were collected during 7‐year period. We found a strong effect of multilocus heterozygosity on female reproductive performance, and a significant, although weaker, effect on breeder survival. However, our matrix population model suggests that this relatively small effect of genetic diversity on breeder survival may have a profound effect on fitness. This highlights the importance of integrating life history consequences in HFC studies. Importantly, heterozygosity was correlated across loci, suggesting that genomewide effects, rather than single loci, are responsible for the observed HFCs. Overall, the HFCs are a worrying symptom of genetic erosion in this declining population. Many long‐lived species are prone to extinction, and future studies should evaluate the magnitude of fitness impact of genetic deterioration on key population parameters, such as survival of breeders.  相似文献   

6.
Variation at five polymorphic microsatellite loci was used to investigate genetic diversity and differentiation of two tetraploid Canarian endemics, Bencomia exstipulata and B. caudata. Data were analysed and are discussed in terms of tetrasomic (autotetraploid) and disomic (allotetraploid) inheritance. In both cases, genetic diversity values were similar to those described in other tetraploid plant species. High genetic differentiation between the only two described natural populations of B. exstipulata was detected (FST = 0.411). Bayesian cluster analysis revealed a geographical structure with distinct genetic groups from each island. High genetic differentiation and low genetic diversity of the B. exstipulata population from Tenerife suggest a recent population bottleneck, perhaps caused by the most recent major volcanic eruption, for this natural locality. This may be heightened by possible inbreeding depression and the monoecy of these species. Polymorphic microsatellite loci were also tested across all species in the Bencomia alliance. These reliably amplified the target sequence, suggesting a high degree of conservation of the sequences flanking the microsatellites. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 429–441.  相似文献   

7.
The relationship between habitat stability, demography, and population genetic structure was explored by comparing temporal microsatellite variability spanning a decade in two closely-related hermaphroditic freshwater snails from Cameroon, Bulinus forskalii and Bulinus camerunensis . Although both species show similar levels of preferential selfing, microsatellite analysis revealed significantly greater allelic richness and gene diversity in populations of the highly endemic B. camerunensis compared to those of the geographically-widespread B. forskalii . Additionally, B. camerunensis populations showed significantly lower spatial genetic differentiation, higher dispersal rates, and greater temporal stability compared to B. forskalii populations over a similar spatial scale. This suggests that a more stable demography and greater gene flow account for the elevated genetic diversity observed in this geographically-restricted snail. This contrasts sharply with a metapopulation model (which includes extinction/contraction, recolonization/expansion, and passive dispersal) invoked to account for population structuring in B. forskalii . As intermediate hosts for medically important schistosome parasites, these findings have ramifications for determining the scale at which local adaptation may occur in the coevolution of these snails and their parasites.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 747–760.  相似文献   

8.
Newly founded isolated populations need to overcome detrimental effects of low genetic diversity. The establishment success of a population may therefore depend on various mechanisms such as assortative mating, purging of deleterious alleles, creation of new mutations and/or repeated inflow of new genotypes to reduce the effects of inbreeding and further loss of genetic variation. We compared the level of genetic variation in introduced populations of an insect species (Metrioptera roeselii) far beyond its natural distribution with levels found in their respective founder populations and coupled the data with timing since establishment. This allowed us to analyze if the introduced populations showed signs of temporal changes in genetic variation and have made it possible to evaluate underlying mechanisms. For this, we used neutral genetic markers, seven microsatellite loci and a 676–bp‐long sequence of the mtDNA COI gene. All tested indices (allelic richness, unbiased expected heterozygosity, effective size, haplotype diversity, and nucleotide diversity) except inbreeding coefficient had significantly higher values in populations within the founding populations inside the continuous area of the species distribution compared with the introduced populations. A logarithmic model showed a significant correlation of both allelic richness and unbiased expected heterozygosity with age of the isolated populations. Considering the species' inferred colonization history and likely introduction pathways, we suggest that multiple introductions are the main mechanism behind the temporal pattern observed. However, we argue that influences of assortative mating, directional selection, and effects of an exceptional high intrapopulation mutation rate may have impacts. The ability to regain genetic diversity at this level may be one of the main reasons why M. roeselii successfully continue to colonize northern Europe.  相似文献   

9.
The structure of populations across landscapes influences the dynamics of their interactions with other species. Understanding the geographic structure of populations can thus shed light on the potential for interacting species to co‐evolve. Host–parasitoid interactions are widespread in nature and also represent a significant force in the evolution of plant–insect interactions. However, there have been few comparisons of population structure between an insect host and its parasitoid. We used microsatellite markers to analyse the population genetic structure of Pleistodontes imperialis sp. 1, a fig‐pollinating wasp of Port Jackson fig (Ficus rubiginosa), and its main parasitoid, Sycoscapter sp. A, in eastern Australia. Besides exploring this host–parasitoid system, our study also constitutes, to our knowledge, the first study of population structure in a nonpollinating fig wasp species. We collected matched samples of pollinators and parasitoids at several sites in two regions separated by up to 2000 km. We found that pollinators occupying the two regions represent distinct populations, but, in contrast, parasitoids formed a single population across the wide geographic range sampled. We observed genetic isolation by distance for each species, but found consistently lower FST and RST values between sites for parasitoids compared with pollinators. Previous studies have indicated that pollinators of monoecious figs can disperse over very long distances, and we provide the first genetic evidence that their parasitoids may disperse as far, if not farther. The contrasting geographic population structures of host and parasitoid highlight the potential for geographic mosaics in this important symbiotic system.  相似文献   

10.
1. The spatial structure of plant patches has been shown to affect host–parasitoid interactions, but its influence on parasitoid diversity remains largely ignored. Here we tested the prediction that parasitoid species richness of the specialist leafminer Liriomyza commelinae increases in larger and less isolated patches of its host plant Commelina erecta. We also explored whether parasitoid abundance and body size affected the occurrence of parasitoid species in local assemblages. 2. A total of 893 naturally established C. erecta patches were sampled on 18 sites around Córdoba city (Argentina). Also, two experiments were performed by creating patches differing in the number of plants and the distance from a parasitoid source. For these tests, plants were infected with the miner in the laboratory prior to placement in the field. 3. Plant patch size, independently of host abundance, positively affected the number of parasitoid species in both survey observations and experimental data. However, plant patch isolation did not influence parasitoid species richness. 4. The probability of finding rare parasitoid species increased with patch size, whereas occupation of isolated patches was independent of dispersal abilities (body size) of parasitoid species. 5. Overall, the results highlight the importance of considering spatial aspects such as the size of plant patches in the study of parasitoid communities.  相似文献   

11.
Many studies aim at testing the impact of recent fragmentation on the genetic diversity and connectivity of populations, while some species do exist naturally in fragmented landscapes because of their habitat requirements. Therefore, it is important to look at the genetic signatures of species occurring in naturally fragmented landscapes in order to disentangle the effect of fragmentation from the effect of habitat requirements. We selected two Nymphalid butterflies for this purpose. While Melanargia galathea is a common butterfly in flower-rich meadows, Melitaea aurelia is closely connected to calcareous grasslands, thus being historically fragmented due to its ecological demands. For the analysis of the genetic response on these opposed patterns, we analysed 18 allozyme loci for 789 individuals (399 individuals of M. galathea and 390 individuals of M. aurelia) in a western German study region with adjacent areas in Luxemburg and northeastern France. Both species showed similarly low genetic differentiations among local populations (M. galathea: F ST 3.3%; M. aurelia: F ST 3.6%), both combined with a moderate level of inbreeding. Isolation-by-distance analysis revealed a significant correlation for both species with similar amounts of explained variances (M. galathea: r 2 = 27.8%; M. aurelia: r 2 = 28.5%). Most parameters of genetic diversity were higher in M. galathea than in M. aurelia, but the latter species had a considerably higher amount of rare or locally restricted genes; the differing ecological demands are thus reflected in these differences. Both species thus seem to be genetically well suited to their respective ecological requirements. In the light of conservation genetics, we deduce that highly fragmented populations are not necessarily prone to extinction. The extinction risk might be linked to the life history of an organism and its population genetic structure.  相似文献   

12.
Genetic differentiation in space can be detected at various scales. First, habitat fragmentation can produce a mosaic genetic structure. Second, life history aspects of a species such as dispersion, mating system, and pollination can generate a genetic structure at a finer level. The interplay of these levels has rarely been studied together. In order to assess the effects of forest fragmentation we analyzed the genetic structure at two spatial scales of the terrestrial orchid Cyclopogon luteoalbus, which lives in patches inside forest fragments in a cloud forest of eastern Mexico. We hypothesized high differentiation between forest fragments and strong spatial genetic structure within fragments under this scenario of strong fragmentation and restricted dispersal patterns. Using 11 allozymic loci we found high genetic diversity at fragment level with moderate differentiation among fragments, and at patch level, strong and variable spatial genetic structure among life cycle stages with high inbreeding coefficients. We also found bottlenecks indicating recent population size reductions. While both inbreeding and restricted seed dispersal may explain the strong spatial genetic structure at patch level, reduction in population size may explain the genetic structure at fragment level. However, the levels of genetic diversity indicate that some between-fragment gene flow has occurred. Bottlenecks and high inbreeding at patch level may result in local extinctions, but as long as an important number of fragments remain, patch recolonization through immigration is possible in C.?luteoalbus.  相似文献   

13.
Inbreeding depression is a reduction of fitness in the progeny of closely related individuals and its effects are assigned to selfing or biparental inbreeding. Vriesea gigantea is a self‐compatible bromeliad species distributed in the Brazilian Atlantic rainforest and habitat destruction and fragmentation and collection have decreased the natural populations. We aim to describe the occurrence of inbreeding depression (δ) in three natural populations of V. gigantea and to correlate this phenomenon with previous studies of fertility, genetic diversity, population genetic structure, gene flow, mating system and seed dispersal in this species. Fifty‐four adult plants were sampled and 108 flowers were used for pollination treatments (selfing, outcrossing and control). For adult plants, we analysed plant and inflorescence height, flower numbers and seed set. In the progenies, evaluated parameters included seed germination and seedling survival rate. The results indicated low to moderate levels of inbreeding depression in V. gigantea (δ = 0.02 to 0.39), in agreement with molecular data from a previous study. Vriesea gigantea populations tolerate some degree of inbreeding, which is consistent with previous results on fertility, mating system, genetic diversity and gene flow. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 312–319.  相似文献   

14.
Mating systems and population dynamics influence genetic diversity and structure. Species that experience inbreeding and limited gene flow are expected to evolve isolated, divergent genetic lineages. Metapopulation dynamics with frequent extinctions and colonizations may, on the other hand, deplete and homogenize genetic variation, if extinction rate is sufficiently high compared to the effect of drift in local demes. We investigated these theoretical predictions empirically in social spiders that are highly inbred. Social spiders show intranest mating, female‐biased sex ratio, and frequent extinction and colonization events, factors that deplete genetic diversity within nests and populations and limit gene flow. We characterized population genetic structure in Stegodyphus sarasinorum, a social spider distributed across the Indian subcontinent. Species‐wide genetic diversity was estimated over approximately 2800 km from Sri Lanka to Himalayas, by sequencing 16 protein‐coding nuclear loci. We found 13 SNPs in 6592 bp (π = 0.00045) indicating low species‐wide nucleotide diversity. Three genetic lineages were strongly differentiated; however, only one fixed difference among them suggests recent divergence. This is consistent with a scenario of metapopulation dynamics that homogenizes genetic diversity across the species' range. Ultimately, low standing genetic variation may hamper a species' ability to track environmental change and render social inbreeding spiders ‘evolutionary dead‐ends’.  相似文献   

15.
Field assessments and genetic analyses on tansy aphid, Metopeurum fuscoviride Stroyan were made aiming to investigate whether a specialist aphid species and its associated predator density differ between chemotypes of the plant host, tansy, and whether the essential oil composition of the plant host determines the genetic differences observed between colonies of M. fuscoviride inhabiting these different chemotypes. Tansy plants were defined after volatile extractions as Camphor Pure and Borneol Pure, respectively, with hybrid chemotypes defined as Camphor Hybrid, Borneol Hybrid, and Thujone Hybrid, respectively. Ladybird beetles, Coccinella septempunctata (L.), clearly dominated Pure Camphor plants, whereas significantly higher numbers of the nursery web spider, Pisaura mirabilis (Clerck), were detected on Borneol Pure and Borneol Hybrid plants. Genetic analyses using five polymorphic microsatellite markers revealed that higher genetic similarity existed between M. fuscoviride aphids from Borneol Pure and Borneol Hybrid plants and between Camphor Pure and Camphor Hybrid plants, respectively, whereas a lower level of genetic similarity was seen between these aphids from Thujone Hybrid plants. Accordingly, it is possible that host plant‐adapted species can create much context‐dependency in the nature and strength of predation effects, which may in turn alter costs and benefits of host plant chemical differentiations, or even the prey genotype variations. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 709–719.  相似文献   

16.
Disturbances like hurricanes can affect diversity and community composition, which may in turn affect ecosystem function. We examined how a simulated hurricane disturbance affected insect communities inhabiting the phytotelma (plant-held waters) of Heliconia caribaea in the Luquillo Experimental Forest of eastern Puerto Rico, a tropical island that frequently experiences hurricanes. We hypothesized that disturbance would alter diversity and that larger Heliconia would attract more species following disturbance due to the area-diversity relationship described by the Theory of Island Biogeography. Individual flower parts (bracts) of Heliconia inflorescences (racemes) were artificially disturbed via removal of existing insect communities, then after refilling with water, cohorts of Heliconia were destructively sampled biweekly for 6 weeks to assess recolonization patterns of α (bract level), β, and γ (summed across bracts; raceme level) diversity over time and across raceme sizes. Although we found no support for our hypothesis about the effect of raceme size on recolonization, our hypothesis regarding recolonization patterns over time was supported; species richness, evenness, and abundance of bracts increased directly after the disturbance and then decreased below pre-disturbance levels, and community composition at the raceme level changed significantly over time during recolonization. β Diversity was also greater in smaller racemes compared to larger racemes, suggesting high heterogeneity across bracts of Heliconia racemes exacerbated by raceme size and age. Overall, our results highlight the importance of scale and appropriate measurements of diversity (particularly α) in experiments aiming to extrapolate conclusions about the ecological impacts of disturbances across different habitats and ecosystems.  相似文献   

17.
In bryophytes, the possibility of intragametophytic selfing creates complex mating patterns that are not possible in seed plants, although relatively little is known about patterns of inbreeding in natural populations. In the peat‐moss genus Sphagnum, taxa are generally bisexual (gametophytes produce both sperm and egg) or unisexual (gametes produced by separate male and female plants). We sampled populations of 14 species, aiming to assess inbreeding variation and inbreeding depression in sporophytes, and to evaluate correlations between sexual expression, mating systems, and microhabitat preferences. We sampled maternal gametophytes and their attached sporophytes at 12–19 microsatellite loci. Bisexual species exhibited higher levels of inbreeding than unisexual species but did generally engage in some outcrossing. Inbreeding depression did not appear to be common in either unisexual or bisexual species. Genetic diversity was higher in populations of unisexual species compared to populations of bisexual species. We found a significant association between species microhabitat preference and population genetic diversity: species preferring hummocks (high above water table) had populations with lower diversity than species inhabiting hollows (at the water table). We also found a significant interaction between sexual condition, microhabitat preference, and inbreeding coefficients, suggesting a vital role for species ecology in determining mating patterns in Sphagnum populations. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 96–113.  相似文献   

18.
Abstract Sclerolaena diacantha is a common and widespread, short-lived chenopod of arid Australia. The diaspore contains a food mass attractive to ants and, at sites where the ant Rhytidoponera sp B is common, thousands of diaspores accumulate on the nest mounds. Bagged plants set seed, showing that it is self-compatible. Population genetic variation was investigated at two levels: within and between sites, and within and between seed banks accumulated on the ant nests. Electrophoretic analysis of adult plants for 17 loci at 12 sites revealed nine polymorphic loci, but within sites only 6–18% of the loci were polymorphic. The values for mean gene diversity (He = 0.042) and total genetic diversity, (HT= 0.088) were lower than those recorded for most other plant species. The mean fixation index of 0.52 indicated a mixed mating system with about 70% selfing. Most of the genetic diversity was distributed within sites (Dst = 0.008) and the mean value of 0.094 for GST indicated low levels of genetic differentiation. Electrophoretic analysis of seeds from 12 ant mounds at two sites showed that genetic differentiation was three times greater between seed banks than between the sites. However, collectively the genetic diversity stored within ant mounds was similar to the total diversity within the sites. It appears that restricted ant-dispersal and moderate inbreeding may create a local population structure that is undetected when sampling at a larger scale. Since investigations of genetic patterns on a very local scale are just beginning, there is much to learn about the evolutionary and genetic consequences of different seed flow patterns.  相似文献   

19.
Characteristics of an organism's life history are often good predictors of genetic diversity and genetic structure. We tested hypotheses about genetic structure and diversity in an intertidal alga based on life history and life form. Fucus spiralis L. is a perennial monoecious alga that is abundant on the shores of Maine. Reproduction in fucoids is highly sensitive to water motion, resulting in fertilization success close to 100%. Given these life history characteristics, we predicted genetic structure among populations to be high and genetic diversity within populations to be low. We used five microsatellite loci to analyze genetic structure and diversity in F. spiralis from four sites on each of two coastal points, Maine, USA. Observed heterozygosities were relatively low (0.23 to 0.56), and FIS estimates were usually significantly large, ranging from 0.021 to 0.476. This suggests that selfing and/or inbreeding may occur. Contrary to predictions, genetic differentiation between the two coastal points was insignificant. Moreover, few sites were genetically different from one another. Pairwise tests revealed complex patterns among sites. Genetic differentiation was not correlated with distance (P>0.05). Life history characteristics are good predictors of genetic diversity but not of population genetic structure in F. spiralis. We suggest that long distance dispersal of F. spiralis via drifting algal rafts increases gene flow. In addition, low levels of genetic structure may arise due to episodic recruitment or recent recolonization events. We discuss the implications of our results in terms of using life history characteristics as predictors of genetic diversity and structure in algae.  相似文献   

20.
The genetic diversity and structure of 12 populations of Megaleranthis saniculifolia, a rare endemic Korean plant, were analyzed using 14 allozyme loci coding 10 enzymes and 78 ISSR loci using seven primers. The genetic diversity of M. saniculifolia at the species level was similar to that observed in out-crossing and long-lived perennials, while at the population level, it was significantly low. The high F IS value of many populations as well as homozygote excess occurred relatively evenly in many populations in relation to the Hardy-Weinberg expectation, suggesting that inbreeding was occurring within the M. saniculifolia populations. The degree of genetic differentiation based on the two markers was high, and there was no correlation between geographic and genetic distance. Bayesian cluster analysis did not reveal any remarkable geographic trends. Positive correlations were observed between genetic diversity (H e and h) and population size. Therefore, low genetic diversity within the population and high population differentiation of M. saniculifolia were closely related to the influence of genetic drift, particularly in highly isolated populations. In addition, the fixation of the main alleles at several loci in the opposite direction provided good evidence for genetic drift. The genetic diversity of M. saniculifolia could be compromised if the distribution area or the size of the population were further reduced. In particular, the isolated populations that are fragmented within an area could be at high risk of extinction due to accelerated inbreeding or genetic drift. Considering this, a close monitoring of the population size and of the changes in the genetic structure must be performed. Some practical measures for genetic conservation are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号