首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interaction behavior between surface plasmon polaritons (SPPs) and Hankel-distributed diffracted waves (DWs) on a silver concentric circular grating film is studied using a rigorous coupled-wave technique for circular structure. It is shown that the numerical technique reveals the excitation characteristics of SPPs in the circular metal grating as well as provides an accurate calculation of SPP intensities for further optimization designs. Results show that the SPPs can be excited by various DWs through the control of wavelength and angle of the incident light. The most efficient excitation of SPPs from this circular metal grating structure can be obtained from the +1st-order DW under a normal incidence with wavelength close to the grating period, and the optimal thickness and duty cycle of the grating are found to be 370 and 0.5 nm, respectively. It is shown that the optimized intensity of SPPs excited from circular metal grating can be higher than that from strip metal grating by over one order of magnitude.  相似文献   

2.
Efficiency is an important criterion in developing a practical surface-plasmon-polariton (SPP) unidirectional launcher. In this paper, we show that multi-groove structures can efficiently launch SPPs by numerically optimizing structural parameters and normal incident light. Experimentally, a high efficiency of 58.4 % is demonstrated in a six-groove structure with a lateral dimension of 3.9 μm. For a three-groove structure with even smaller lateral dimension of 1.35 μm, the efficiency presents a broadband response, which remains higher than 42 % from 720 to 860 nm. The proposed multi-groove structures with high SPP launching efficiency and small size exhibit potential in highly integrated plasmonic circuits.  相似文献   

3.
A method to sense the excitation of surface plasmon polariton (SPP) on metallic grating device using the transmitted signal will be presented. The grating transmittance signal will be fully characterized varying the light incident angle and azimuthal grating orientation by means of the SPP vector model and rigorous coupled-wave analysis simulation. Simulation results will be compared with experimental measurements obtained with a 635 nm wavelength laser in the transverse magnetic polarization mode. The laser will light grating devices in contact with either air or water through a customized microfluidic chamber. A characterization of the diffracted rays will show the relationship between the grating coupling configuration and the Kretschmann one. In fact, the diffracted ray affected by SPP resonance is transmitted with an output angle which is the same incident angle that should be used to excite SPP in Kretschmann configuration. Lastly, the grating parameters (amplitude and metal thickness) impact on transmittance signal will be analyzed with respect to the order zero reflectance signal.  相似文献   

4.
Tu  Qing  Liu  Jianxun  Ke  Shaolin  Wang  Bing  Lu  Peixiang 《Plasmonics (Norwell, Mass.)》2020,15(3):727-734

We investigate the excitation of surface plasmon polaritons (SPPs) using a metallic nanoaperture array illuminated by circularly polarized Laguerre-Gaussian (LG) vortex beams. The direction of SPP excitation is tunable by changing the circular polarization and topological charge of LG beams. The left- or right-handed circular polarization determines SPP propagation on either side of the nanoaperture array. Furthermore, varying the topological charge of LG beam will result in beam splitting of SPPs. We also utilize a composite nanoaperture array with different periods to achieve unidirectional excitation of SPPs. The study provides an interesting approach to control the excitation direction of SPPs and may find great applications in SPP generators and optical switches.

  相似文献   

5.
Long-range surface plasmon polaritons (SPPs), which propagate along metal/dielectric interfaces to submillimeter distances in the range of near-infrared (NIR) excitation wavelength, were examined by two-color two-photon photoelectron emission microscopy (2P-PEEM). Interferences between incident NIR photons and SPPs excited by the NIR photons at surface defects were imaged by detecting photoelectrons emitted from a gold surface, assisted by simultaneously irradiated ultraviolet photons which are to overcome the workfunction of the surface. The wavelength of the interference beat depends sensitively on the NIR wavelength. By analyzing the interference beat, the dispersion curve as well as phase and group velocities of SPP’s were experimentally obtained. The results closely match the theoretical one based on the Drude free electron model, indicating that two-color 2P-PEEM is applicable not only to the visualization of NIR-excited SPPs but also to the quantitative analysis of its physical properties. This method will be widely used to observe SPPs for various artificial plasmonic devices.  相似文献   

6.
The excitation of surface plasmon polariton (SPP) at interface of a metal and an ambichiral sculptured thin film was theoretically investigated in the Kretschmann configuration using the transfer matrix method. The dependence of SPP modes for a P polarization plane wave on the incident angle of light and the angle of rise of nanocolumns of ambichiral dielectric medium was reported. We found that multiple SPP modes are excited at the interface of metal and ambichiral dielectric medium. The results of phase speed as a function of pitch showed only that a SPP mode can be excited at all pitches.  相似文献   

7.
Chen  Panpan  Chen  Cong  Xi  Jianxin  Du  Xiang  Liang  Li  Mi  Jiajia  Shi  Jianping 《Plasmonics (Norwell, Mass.)》2022,17(1):43-49

Owing to the unique properties of strongly confined and enhanced electric fields, surface plasmon polaritons (SPPs) provide a new platform for the realization of ultracompact plasmonic circuits. However, there are challenges in coupling light into SPPs efficiently and subsequently routing SPPs. Here, we propose a multi-directional SPP splitter and polarization analyzer based on the catenary metasurface. Based on the abundant electromagnetic modes and geometric phase modulation principle of catenary structure, the device has realized high-efficiency beam splitting for four different polarization states (x-polarization, y-polarization, LCP, and RCP). The central wavelength of the device is 632 nm and the operation bandwidth can reach 70 nm (585–655 nm). Based on the phenomenon of SPP beam splitting, we present a prototype of a polarization analyzer, which can detect the polarization state of incident light by adding photodetector with light intensity logic threshold in four directions. Moreover, by combining this device with dynamic polarization modulation techniques, it is possible to be served as a router or switch in integrated photonic circuits.

  相似文献   

8.
Surface plasmon polariton (SPP) excitation of the coupled light at small contact area of chromium pillars as the interface of metastructured gold funnel layer and silica medium can be enhanced locally in the gold meta-funnel-structured filter. In the present investigation, the filter is comprised of three layers, namely gold meta-funnels, nano-sized chromium pillars, and silica as the substrate. The incoming infrared (IR) waves, coupled with the excited plasmons at the first and second layers, form an excitation, known as deformed plasmon polariton. Asymmetric distribution of localized SPPs takes place owing to the inherent converging plasmonic feature of the gold funnel structure. The formation of reflection peaks with different magnitudes at different incidence angles of the polarized wave in the spectral characteristics makes the structure prominent for filtering the IR waves. Moreover, the gold meta-funnel-structured filter possesses the additional feature of distinguishing the type of polarized incidence wave. It was found that the transmission remains maximum corresponding to the normal incidence of the TE-polarized waves, whereas the TM-polarized waves over the same wavelength range are almost blocked for any value of incidence angle. The existence of transmission peaks corresponding to the TE waves demonstrates another application of this device as metastructured polarizer filter.  相似文献   

9.
This paper reports the successful excitation of surface plasmon polaritons (SPPs) through 1D metallic grating on higher refractive index GaP substrate. Coupling efficiency (η) of a free-space transverse-magnetic (TM) plane-wave mode into a SPP mode is crucial for many plasmonic devices. This η predominantly depends on the fabrication (milling) parameters and the factors (under- and over-milling) affecting the η is investigated experimentally and numerically. First of all, η is estimated by measuring the transmission spectra obtained through the plasmonic grating structures by varying the slit width (a) for a fixed period (Λ) and the thickness (t) of the gold (Au) film in which the grating is formed. The wave vector of the incident light is tuned to match the wave vector of the SPP, to get maximum η. For an optimum Au film thickness, a slit width of half of the periodicity of 770 nm in the grating device yields a maximum η. Such grating devices support only a fundamental plasmonic mode because the profile/shape of the slit in the grating device is more like a sinusoidal nature. Furthermore, such grating offers intermediate scattering to the incident light and the SPP as well which in-truns couple more incident energy to the SPPs. Moreover, over-milling results in decreased η where the crystalline plane of the substrate is disturbed. Finite element method (FEM) in COMSOL modeling is used to understand the underlying physics. This study is very useful for the development of the device application in real word.  相似文献   

10.
Excitation of multiple surface plasmon-polaritons (SPPs) by an equichiral sculptured thin film with a metal layer defect was studied theoretically in the Sarid configuration, using the transfer matrix method. Multiple SPP modes were distinguished from waveguide modes in optical absorption for p-polarized plane wave. The degree of localization of multiple SPP waves was investigated by calculation of the time-averaged Poynting vector. The results showed that the long-range and short-range SPP waves can simultaneously be excited at both interfaces of metal core in this proposed structure which may be used in a broad range of sensing applications.  相似文献   

11.

The excitation of surface plasmon polaritons (SPPs) through one-dimentional (1D) metallic (Au) grating on higher refractive index -GaP substrate is investigated. Such grating devices find potential applications in real world, only if the coupling efficiency (η) of a free-space transverse-magnetic plane-wave into a SPPs mode is maximum. A simple and robust technique is used to estimate the η, by simply measuring the transmission through the grating while varying slit width (a) but period (Λ) and the thickness (t) remain fixed. When the wave vector (k 0 ) of the incident light is matched to that of SPP, highest η is achieved. It is found that Λ/3 < a < Λ/2 yields a maximum η where the intermediate scattering couples more incident energy to SPPs. These gratings are designed in such a way that they support only the fundamental plasmonic mode yielding higher η. Scanning near-field optical measurements also confirm and corroborate the observations of far-field and near-field modeling (COMSOL multiphysics) results.

  相似文献   

12.
The optical beam generated by a micro triangular prism is presented to excite surface plasmon polaritons (SPPs) on a single silver nano slit. The electromagnetic fields generated by the micro triangular prism and the excited surface plasmon polaritons are simulated with finite-difference time-domain method. Compared with directly normal incident beam, the efficiency of SPPs’ excitation with the beam generated by the micro triangular prism is highly improved.  相似文献   

13.
We report theoretical predictions and experimental observations of the reduced detection volume with the use of surface-plasmon-coupled emission (SPCE). The effective fluorescence volume (detection volume) in SPCE experiments depends on two near-field factors: the depth of evanescent wave excitation and a distance-dependent coupling of excited fluorophores to the surface plasmons. With direct excitation of the sample (reverse Kretschmann excitation) the detection volume is restricted only by the distance-dependent coupling of the excitation to the surface plasmons. However, with the excitation through the glass prism at surface plasmon resonance angle (Kretschmann configuration), the detection volume is a product of evanescent wave penetration depth and distance-dependent coupling. In addition, the detection volume is further reduced by a metal quenching of excited fluorophores at a close proximity (below 10nm). The height of the detected volume size is 40-70nm, depending on the orientation of the excited dipoles. We show that, by using the Kretschmann configuration in a microscope with a high-numerical-aperture objective (1.45) together with confocal detection, the detection volume can be reduced to 1-2attoL. The strong dependence of the coupling to the surface plasmons on the orientation of excited dipoles can be used to study the small conformational changes of macromolecules.  相似文献   

14.
In this paper, a nanoscale three-dimensional plasmonic waveguide (TDPW), created by depositing an Ag stripe on a SiO2 layer with an Ag substrate, is introduced and theoretically investigated at visible and telecom wavelengths. By applying the effective index method and finite-difference time-domain numerical simulations, the authors find that the propagation properties of surface plasmon polaritons (SPPs) in the TDPW, including the propagation length and beam width, are mainly decided by the core (the SiO2 layer just under the Ag stripe) itself, due to the much stronger localization of SPPs in the core than in the two side claddings (the SiO2 layer without the covered Ag stripe). And propagating SPPs in the TDPW are strongly confined in the core region, even with a very small waveguide cross section. Furthermore, based on the stronger localization of propagation SPPs in the TDPW, two kinds of bending waveguides, oblique bending and 90° circular bending waveguides, are also investigated. For wavelength of 1550 nm, the 90° circular bending guide with a minimum radius as small as 2.6 μm show nearly zero radiation loss, even with a small waveguide cross section of 70?×?80 nm2. The proposed TDPW is suitable for planar integration and provides a possible way for constructing various nanoscale counterparts of conventional integrated devices such as splitter, resonator, sensor, and optical switch.  相似文献   

15.
The cyanobacterium Acaryochloris marina developed two types of antenna complexes, which contain chlorophyll-d (Chl d) and phycocyanobilin (PCB) as light-harvesting pigment molecules, respectively. The latter membrane-extrinsic complexes are denoted as phycobiliproteins (PBPs). Spectral hole burning was employed to study excitation energy transfer and electron–phonon coupling in PBPs. The data reveal a rich spectral substructure with a total of four low-energy electronic states whose absorption bands peak at 633, 644, 654, and at about 673 nm. The electronic states at ~633 and 644 nm can be tentatively attributed to phycocyanin (PC) and allophycocyanin (APC), respectively. The remaining low-energy electronic states including the terminal emitter at 673 nm may be associated with different isoforms of PC, APC, or the linker protein. Furthermore, the hole burning data reveal a large number of excited state vibrational frequencies, which are characteristic for the chromophore PCB. In summary, the results are in good agreement with the low-energy level structure of PBPs and electron–phonon coupling parameters reported by Gryliuk et al. (BBA 1837:1490–1499, 2014) based on difference fluorescence line-narrowing experiments.  相似文献   

16.

We present an experimental study of surface plasmon polaritons (SPPs) propagation length (LSPP) on polycrystalline metal (gold and silver) films, fabricated by evaporation and sputtering techniques on glass substrates. For the excitation of SPPs, polymer grids on the sample surface are used. The SPPs are excited by a He-Ne (633 nm) and the LSPP are measured by grating-coupling method and the leakage radiation microscopy. Dependence of LSPP on the film thickness is also investigated. The longer LSPP is observed with evaporation technique in comparison to the sputtering technique for the silver films. On the other hand, sputtering technique provides longer LSPP for the gold films. Additionally, atomically flat crystalline gold flakes are also considered for the SPPs evaluation. The LSPP estimation on these flakes is carried out for light wavelength of 633 and 800 nm.

  相似文献   

17.
The enhancement of the internal quantum efficiency (IQE) of deep-ultraviolet Al x Ga1-x N/Al y Ga1-y N (x < y) quantum wells (QWs) by fabricating one-dimensional Al nanogratings on a QW structure for inducing surface plasmon (SP) coupling is demonstrated. Through temperature-dependent photoluminescence (PL) measurement, the enhancements of IQE in different emission polarizations are illustrated. Due to the small difference in energy band level between the heavy/light hole and split-off valence bands, the IQEs of the transverse electric- (TE-) and transverse magnetic- (TM-) polarized emissions are about the same. When emission polarization is perpendicular to Al-grating ridges, the SP resonance mode for coupling with the QWs is dominated by localized surface plasmon (LSP). When emission polarization is parallel with Al-grating ridges, the coupled SP resonance mode may mix LSP and SP polariton. In this polarization, LSP can be excited because of the width fluctuation of a grating ridge. When the excitation laser polarization is perpendicular to Al-grating ridges, the strong LSP resonance at the excitation laser wavelength leads to stronger excitation and hence higher IQE levels.  相似文献   

18.
To make the gold nanorod (AuNR) a better photoluminescence (PL) probe for cell imaging under two-photon excitation (TPE), the effect of the aspect ratio of AuNRs was studied. The AuNRs with the aspect ratios of 2.7, 3.2, 4.1, and 4.5 and correlated longitudinal surface plasmon resonance (LSPR) bands of 710, 760, 820, and 870 nm were compared. The approach of two-photon excited PL was used to measure the two-photon absorption cross section (TPACS) of these AuNRs in aqueous solutions. Under TPE of an 800-nm femtosecond laser, the TPACS of AuNRs with an aspect ratio of 3.2 was found to be the highest (about 3?×?109 GM), and that of AuNRs (aspect ratio of 2.7) was only 1.5?×?109 GM. The probe function of these two AuNRs was further compared in cell imaging studies using the human liver cancer cell (QGY) as the cell model. Both TPE PL image and confocal reflectance image of AuNR-loaded cells were acquired comparatively in measurements. The brightness and contrast of confocal reflectance images for these two AuNRs in cells are similar. In contrast, the PL images of cellular AuNRs (2.7) under TPE of 800 nm are weak but that of cellular AuNRs (3.2) is much better. These results show that when the LSPR band of AuNRs is coincided with the excitation wavelength, the TPACS of these AuNRs will be enhanced ensuring a good quality of cell imaging under TPE. The LSPR band is correlated to the aspect ratio of AuNRs. Therefore, in cell imaging studies with TPE, the aspect ratio effect of AuNRs should be taken into consideration.  相似文献   

19.
Surface plasmon polaritons (SPPs) manipulation on metal surfaces is important for constructing ultracompact integrated micro/nano-optical devices and systems. We employ the methodology of surface electromagnetic wave holography (SWH) to design holographic groove patterns for controlling SPPs with complicated wavefronts traveling on metal surface. SPPs are scattered by these deli groove patterns and interfere with each other to form desired SPP wavefronts. Several devices are demonstrated to control the intensities and phases of SPPs, such as focusing a plane SPP or diverging SPPs to two points with different phases, and focusing SPPs with complicated beam profile to a point. The finite-difference time-domain simulations show that in all cases, the predesignated functionalities are fully achieved by the designed plasmonic holographic structures. The results strongly support the power of SWH for shaping the complicated wavefront of in-plane transporting SPPs.  相似文献   

20.
We demonstrate a type of confined nanosource based on surface plasmon band-gap structure consisting of a nanocavity surrounded by grooves. A single, localized, and non-radiating central peak is obtained and can be used as a nanosource. The characteristics of the surface plasmon polariton (SPP) field in the vicinity of the structures with different geometrical parameters are investigated experimentally. A confined central peak is obtained in the nanocavity. The full width at half maximum of the central peak is beyond the diffraction limit and changes little during 600 nm distance away from the sample surface. With the modifications of the geometrical parameters, the central peak intensity can be enhanced and the sidelobes can be suppressed. The physical origin of the enhancement and the surface-sensitivity is explored theoretically. These phenomena demonstrate the abilities of the structures to collect the electromagnetic field and to tailor the SPP field profile. This type of SPP-based nanosource is promising to be applied in near-field imaging, data storage, optical manipulation, and localized spectrum excitation, and has potential applications in nano-photonics devices based on SPPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号