首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Oval cells are facultative liver progenitor cells, which are invoked during chronic liver injury in order to replenish damaged hepatocytes and bile duct cells. Previous studies have observed inflammation and cytokine production in the liver during chronic injury. Further, it has been proposed that inflammatory growth factors may mediate the proliferation of oval cells during disease progression. We have undertaken a detailed examination of inflammation and cytokine production during a time course of liver injury and repair, invoked by feeding mice a choline-deficient, ethionine-supplemented (CDE) diet. We show that immediately following initial liver injury, B220-expressing leucocytes transiently infiltrate the liver. This inflammatory response occurred immediately before oval cell numbers began to expand in the liver, suggesting that the two events may be linked. Two waves of liver cytokine production were observed during the CDE time course. The first occurred shortly following commencement of the diet, suggesting that it may represent a hepatic acute phase response. However, examination of acute phase marker expression in CDE-fed mice did not support this hypothesis. The second wave of cytokine expression correlated with the expansion of oval cell numbers in the liver, suggesting that these factors may mediate oval cell proliferation. No inflammatory signalling was detected following withdrawal of the injury stimulus. In summary, our results document a close correlation between inflammation, cytokine production and the expansion of oval cells in the liver during experimental chronic injury.  相似文献   

2.
Liver development is regulated by soluble factors as well as cell-cell contacts. We previously reported that oncostatin M (OSM) induced hepatic maturation in a primary culture of embryonic day 14 liver cells. While OSM expression in the liver starts in mid gestation and decreases in postnatal stages, hepatocyte growth factor (HGF) is mainly expressed in the liver in the first few days after birth. In this study, we compared the effect of OSM and HGF on the differentiation of fetal hepatic cells in vitro. Like OSM, HGF in the presence of dexamethasone induced expression of glucose-6-phosphatase, tyrosine amino transferase and carbamoyl-phosphate synthase, and accumulation of glycogen in fetal hepatic cells, although to a lesser extent than OSM. Interestingly, while both OSM and HGF up-regulated production of albumin, secretion of albumin occurred only in response to OSM. In addition, although hepatic maturation induced by OSM depends on STAT3, HGF failed to activate STAT3 and HGF-induced differentiation was independent of STAT3. These results indicate that OSM and HGF induce hepatic maturation through different signaling pathways.  相似文献   

3.
The activities of several different phase I and phase II drug-metabolizing enzymes were measured in freshly isolated oval cells from rats fed a choline-deficient/DL-ethionine-supplemented diet for 6 weeks and alsoin vitro in the established oval cell line OC/CDE 6. No cytochrome P450 was spectrophotometrically measurable in both preparations and two cytochrome P450-dependent monoxygenase activities, aminopyrineN-demethylase and ethoxyresorufinO-deethylase, could not be detected in the oval cells of both sources. However, cytosolic glutathione transferase, microsomal expoxide hydrolase and UDP-glucuronosyltransferase activities were clearly measurable in oval cells. Similar enzyme activities were found in freshly isolated and cultured oval cells. The highest activities of these three enzymes were detected during the exponential growth phase of the cultured cells; thereafter the activities decreased until the cells reached confluency. Changes in phenol UDP-glucuronosyltransferase (UGT1A1) mRNA levels paralleled the variations in UDP-glucuronosyltransferase activity, i.e. they were high in exponentially growing oval cells and low in confluent cell cultures. Taking into account that oval cells are able to proliferate in the livers of rats continuously fed a choline-deficient/DL-ethionine-supplemented diet and that none of the analyzed drug metabolizing enzymes are involved in the activation or detoxication ofDL-ethionine, the described pattern might be part of a more general, nonspecific, protection mechanism enabling these cells to overcome the cytotoxic effects of a variety of carcinogens and to proliferate even in their presence. Furthermore, the expression of microsomal epoxide hydrolase, cytosolic glutathione transferase and UDP-glucuronosyltransferase appears to depend on the proliferative status of the cells.Abbreviations CDE choline-deficient/DL-ethionine-supplemented diet - GST glutathione transferase - mEH microsomal epoxide hydrolase - UGT UDP-glucuronosyltransferase  相似文献   

4.
Oval cells are liver epithelial cells that proliferate during hepatocarcinogenesis and chemically induced severe liver injury. It has been suggested that these cells represent hepatic stem cells which might play an important role in the histogenesis of cholangiocellular as well as hepatocellular carcinomas. In order to test this hypothesis highly purified oval cell preparations and propagable oval cell lines are needed. In the present study the isolation, biochemical characterization, and longterm culture of oval cells from rats fed a choline-deficient/DL-ethionine-supplemented diet for 6, 14, or 22 weeks are described. The freshly isolated oval cells were γ-glutamyltranspeptidase-positive, cytokeratin 7-, 8-, 18-, and 19-positive, albumin-positive, peroxidase-negative, and α-fetoprotein-negative and expressed lactate dehydrogenase isoenzymes 1-5. In addition, low but clearly measurable glucose-6-phosphatase and high γ-glutamyltranspeptidase and alkaline phosphatase activities (when compared to activities in untreated liver parenchymal cells) were measured in oval cells. Three oval cell lines, OC/CDE 6, OC/CDE 14, and OC/CDE 22, were established. They contained small and large epithelial cells replicating to form uniform monolayers with a cobblestone appearance; furthermore, a very low number of mononucleated giant cells were also present in the three cell lines. OC/CDE 6, OC/CDE 14, and OC/CDE 22 cells were γ-glutamyltranspeptidase-negative, were transiently albumin-positive, maintained the glucose-6-phosphatase activity levels measured in freshly isolated oval cells, and expressed lactate dehydrogenase isoenzymes 2-5. After exposure of the cultured oval cells to dimethyl sulfoxide or sodium butyrate, 35-40% of the cells reexpressed albumin, and glucose-6-phosphatase activity was enhanced; in addition, sodium butyrate strongly increased γ-glutamyltranspeptidase and alkaline phosphatase activities. In conclusion, oval cells express phenotypic markers of liver parenchymal as well as bile duct epithelial cells and possess a certain intrinsic plasticity. In order to test if the oval cells indeed represent an intermediate step in the differentiation of certain cells within the bile duct and ductular epithelial cell compartment to parenchymal cells, the three cell lines described herein will be transformed in vitro and their potential to give rise to cholangiocellular and/or hepatocellular carcinomas will be verified in vivo.  相似文献   

5.
Liver progenitor (oval) cells have enormous potential in the treatment of patients with liver disease using a cell therapy approach, but their use is limited by their scarcity and the number of donor livers from which they can be derived. Bone marrow may be a suitable source. Previously the derivation of oval cells from bone marrow was examined in rodents using hepatotoxins and partial hepatectomy to create liver damage. These protocols induce oval cell proliferation; however, they do not produce the disease conditions that occur in humans. In this study we have used the choline-deficient, ethionine-supplemented (CDE) diet (which causes fatty liver) and viral hepatitis as models of chronic injury to evaluate the contribution of bone marrow cells to oval cells under conditions that closely mimic human liver disease pathophysiology. Following transplantation of lacZ-transgenic bone marrow cells into congenic mice, liver injury was induced and the movement of bone marrow cells to the liver monitored. Bone marrow-derived oval cells were observed in response to the CDE diet and viral injury but represented a minor fraction (0–1.6%) of the oval cell compartment, regardless of injury severity. In all situations only rare, individual bone marrow-derived oval cells were observed. We hypothesized that the bone marrow cells may replenish oval cells that are expended by protracted liver injury and regeneration; however, experiments involving a subsequent episode of chronic liver injury failed to induce proliferation of the bone marrow-derived oval cells that appeared as a result of the first episode. Bone marrow-derived hepatocytes were also observed in all injury models and controls at a frequency unrelated to that of oval cells. We conclude that during viral-and steatosis-induced liver disease the contribution of bone marrow cells to hepatocytes, either via oval cells or by independent mechanisms, is minimal and that the majority of oval cells responding to this injury are sourced from the liver.  相似文献   

6.
Fetal liver, the major site of hematopoiesis during embryonic development, acquires additional various metabolic functions near birth. Although liver development has been characterized biologically as consisting of several distinct steps, the molecular events accompanying this process are just beginning to be characterized. In this study, we have established a novel culture system of fetal murine hepatocytes and investigated factors required for development of hepatocytes. We found that oncostatin M (OSM), an interleukin-6 family cytokine, in combination with glucocorticoid, induced maturation of hepatocytes as evidenced by morphological changes that closely resemble more differentiated hepatocytes, expression of hepatic differentiation markers and intracellular glycogen accumulation. Consistent with these in vitro observations, livers from mice deficient for gp130, an OSM receptor subunit, display defects in maturation of hepatocytes. Interestingly, OSM is expressed in CD45(+) hematopoietic cells in the developing liver, whereas the OSM receptor is expressed predominantly in hepatocytes. These results suggest a paracrine mechanism of hepatogenesis; blood cells, transiently expanding in the fetal liver, produce OSM to promote development of hepatocytes in vivo.  相似文献   

7.
8.
9.
Oval cells have great potential for use in cell therapy to treat liver disease, however this cannot be achieved until the factors which govern their proliferation and differentiation are better understood. We describe a method to establish primary cultures of murine oval cells, and the derivation of two novel lines from these. Primary cultures from the livers of wildtype or TAT-GRE lacZ transgenic mice subjected to a choline-deficient, ethionine-supplemented diet comprised up to 80% oval cells at day 7 based on A6 or CK19 staining. Cell lines were clonally derived, which underwent spontaneous immortalisation following prolonged maintenance in culture. Immunostaining and RT-PCR demonstrated they express hepatocytic and biliary markers and they were therefore termed “bipotential murine oval liver” (BMOL) cells. Under proliferating culture conditions, BMOL or BMOL-TAT cells abundantly expressed oval cell and biliary markers, whereas mature hepatocytic markers were upregulated when the growth conditions were changed to facilitate differentiation. Hepatic differentiation of BMOL-TAT cells could be traced by measuring the expression of their lacZ transgene, which is driven by a promoter element from tyrosine aminotransferase (TAT), a marker of adult hepatocytes. Interestingly, haematopoietic markers were upregulated in superconfluent cultures, indicating a possible multipotentiality. None of the cell lines grew in semi-solid agar, nor did they form tumours in nude mice, suggesting they are non-tumourigenic.

These novel murine oval cell lines, together with a reliable method for isolation and culture of primary oval cells, will provide a useful tool for investigating the contribution of oval cells to liver regeneration.  相似文献   


10.
Hepatocyte growth factor (HGF) is a potent mitogen for a variety of cells including hepatocytes. While rat oval cells are supposed to be one of hepatic stem cells, biological effects of HGF on oval cells and their relevant signal transduction pathways remain to be determined. We sought to investigate them on OC/CDE22 rat oval cells, which are established from the liver of rats fed a choline-deficient/DL-ethionine-supplemented diet. The oval cells were cultured on fibronectin-coated dishes and stimulated with recombinant HGF, transforming growth factor-alpha (TGF-alpha), and thrombopoietin (TPO) under the serum-free medium condition. HGF treatment enhanced [3H]thymidine incorporation into oval cells in a dose-dependent manner. On the contrary, treatment with TGF-alpha or TPO had no significant effects on [3H]thymidine incorporation into the oval cells. c-Met protein was phosphorylated at the tyrosine residues after the HGF treatment. AKT, extracellular signal-regulated kinase 1/2 (ERK1/2), and p70(s6k) were simultaneously activated after the HGF stimulation, peaking at 30min after the treatment. The activation of AKT, p70(s6k), and ERK1/2 induced by HGF was abolished by pre-treatment with LY294002, a phosphoinositide 3-OH kinase (PI3K) inhibitor, and U0126, a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, respectively. When the cells were pre-treated with LY294002 prior to the HGF stimulation, the proliferative action of HGF was completely abrogated, implying that the PI3K/AKT signaling pathway is responsible for the biological effect of HGF. These in vitro data indicate that HGF exerts a proliferative action on hepatic oval cells via activation of the PI3K/AKT signaling pathway.  相似文献   

11.
The Gas6/Axl pathway has been increasingly implicated in regeneration and tissue repair and, recently, in the control of innate immunity. In liver, we have demonstrated that Gas6 and its receptor Axl are expressed in macrophages, progenitor cells, and myofibroblasts and that Gas6 deficiency reduced inflammation and myofibroblast activation, causing delayed liver repair in response to acute injury. All these data suggest a role of Gas6/Axl signaling in pathogenesis of chronic liver diseases. In the present study, we address the role of Gas6 in steatohepatitis and progression to liver fibrosis using Gas6-deficient mice fed a choline-deficient ethionine-supplemented diet (CDE) or receiving a chronic carbon tetrachloride (CCl(4)) treatment. Gas6 deficiency attenuated hepatic steatosis by limiting CDE-induced downregulation of genes involved in β-oxidation observed in wild-type animals. Moreover, Gas6-deficient mice displayed reduction of hepatic inflammation, revealed by limited F4/80-positive macrophage infiltration, decreased expression of IL-1β, TNF-α, lymphotoxin-β, and monocyte chemotactic protein-1, and attenuated hepatic progenitor cell response to CDE diet. Gas6 deficiency reduced CDE-induced fibrogenesis and hepatic myofibroblast activation and decreased expression of TGF-β and collagen 1 mRNAs. After chronic CCl(4) injury, Gas6-deficient mice also exhibited reduced liver fibrosis as a consequence of defective macrophage recruitment compared with wild-type animals. We conclude that improvement of steatohepatitis and fibrosis in Gas6(-/-) mice is linked to an inhibition of the inflammatory response that controls lipid metabolism and myofibroblast activation. This study highlights the deleterious effect of Gas6 in the progression of steatosis to steatohepatitis and fibrosis.  相似文献   

12.
The liver is a unique organ with the potential to regenerate from injury. Hepatic stem cells contribute to liver regeneration when surviving hepatocytes in injured liver are unable to proliferate. To investigate the mechanism of liver regeneration in vitro, we established hepatic stem cell lines named HY1, HY2 and HY3, derived from a healthy liver of adult rat. HY cells showed an expression pattern similar to oval cells, and efficiently induced hepatic differentiation following sequential treatment with type I collagen, transforming growth factor-beta1 (TGF-beta1), and hepatocyte growth factor (HGF) or oncostatin M (OSM). These results suggested that HY cells are liver stem cells representing an excellent tool for in vitro studies on liver regeneration.  相似文献   

13.
The 2-acetaminofluorene/partial hepatectomy (AAF/Phx) model is widely used to induce oval/progenitor cell proliferation in the rat liver. We have used this model to study the impact of a primary hepatocyte mitogen, triiodothyronine (T3) on the liver regenerating by the recruitment of oval/progenitor cells. Administration of T3 transiently accelerates the proliferation of the oval cells, which is followed by rapid differentiation into small hepatocytes. The oval cell origin of the small hepatocytes has been proven by tracing retrovirally transduced and BrdU marked oval cells. The differentiating oval cells become positive for hepatocyte nuclear factor-4 and start to express hepatocyte specific connexin 32, α1 integrin, Prox1, cytochrom P450s, and form CD 26 positive bile canaliculi. At the same time oval cell specific OV-6 and alpha-fetoprotein expression is lost. The upregulation of hepatocyte specific mRNAs: albumin, tyrosine aminotransferase and tryptophan 2,3-dioxygenase detected by real-time PCR also proves hepatocytic maturation. The hepatocytic conversion of oval cells occurs on the seventh day after the Phx in this model while the first small hepatocytes appear 5 days later without T3 treatment. The administration of the primary hepatocyte mitogen T3 accelerates the differentiation of hepatic progenitor cells into hepatocytes in vivo, and that may have therapeutic potential. Supported by OTKA T 42674 and ETT 32/2006.  相似文献   

14.
Adult mice were fed a choline-deficient ethionine enriched (CDE) diet for 24, 48 or 72 h. They were then fasted for 24 or 48 h prior to sacrifice. All tissues were studied by light and electron microscopy. Animals fed the CDE diet for 24 h exhibited cells with vacuolated cytoplasm, and the accumulation of lipid in these cells was clearly abnormal. Animals fed the CDE diet for 24 h and subsequently a regular diet for 48 h displayed normal hepatocytes, suggesting that the alterations at 24 h were reversible. Following 48 or 72 h of feeding the CDE diet, abundant lipid-laden cells were observed in the hepatic lobules, and at the electron microscope level these cells were undergoing frank degeneration. Evidence indicated that changes after 48 or 72 h were irreversible.  相似文献   

15.
We recently reported that, in thyroid cells, ER stress triggered by thapsigargin or tunicamycin, two well known ER stressing agents, induced dedifferentiation and loss of the epithelial phenotype in rat thyroid cells. In this study, we sought to evaluate if, in thyroid cells, ER stress could affect MHC class I expression and the possible implications of this effect in the alteration of function of natural killer cells, suggesting a role in thyroid pathology. In both, a human line of fetal thyroid cells (TAD-2 cells) and primary cultures of human thyroid cells, thapsigargin and tunicamicin triggered ER stress evaluated by BiP mRNA levels and XBP-1 splicing. In both cell types, TAD-2 cell line and primary cultures, major histocompatibility complex class I (MHC-I) plasmamembrane expression was significantly reduced by ER stress. This effect was accompanied by signs of natural killer activation. Thus, natural killer cells dramatically increased IFN-γ production and markedly increased their cytotoxicity against thyroid cells. Together, these data indicate that ER stress induces a decrease of MHC class I surface expression in thyroid cells, resulting in reduced natural killer-cell self-tolerance.  相似文献   

16.
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P < 0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P < 0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.  相似文献   

17.
Leukemia inhibitory factor (LIF) and its receptor (LIFR) are "twins" of Oncostatin M (OSM) and OSMR, respectively, likely having arisen through gene duplications. We compared their effects in a bone nodule-forming model of in vitro osteogenesis, rat calvaria (RC) cell cultures. Using a dominant-negative LIF mutant (hLIF-05), we showed that in RC cell cultures mouse OSM (mOSM) activates exclusively glycoprotein 130 (gp130)/OSMR. In treatments starting at early nodule formation stage, LIF, mOSM, IL-11, and IL-6 + sIL-6R inhibit bone nodule formation, that is, osteoprogenitor differentiation. Treatment with mOSM, and no other cytokine of the family, in early cultures (day 1-3 or 1-4) increases bone colony numbers. hLIF-05 also dose dependently stimulates bone nodule formation, confirming the inhibitory action of gp130/LIFR on osteogenesis. In pulse treatments at successive stages of bone nodule formation and maturation, LIF blocks osteocalcin (OCN) expression by differentiated osteoblasts, but has no effect on bone sialoprotein (BSP) expression. Mouse OSM inhibits OCN and BSP expression in preconfluent cultures with no or progressively reduced effects at later stages, reflecting the disruption of early nodules, possibly due to the strong apoptotic action of mOSM in RC cell cultures. In summary, LIFR and OSMR display differential effects on differentiation and phenotypic expression of osteogenic cells, most likely through different signal transduction pathways. In particular, gp130/OSMR is the only receptor complex of the family to stimulate osteoprogenitor differentiation in the RC cell culture model.  相似文献   

18.
Stromal derived factor-1 alpha (SDF-1alpha) and its receptor CXCR4 have been shown to play a role in the systematic movement of hematopoietic stem cells (HSC) in the fetal and adult stages of hematopoiesis. Under certain physiological conditions liver oval cells can participate in the regeneration of the liver. We have shown that a percentage of oval cells are of hematopoietic origin. Others have shown that bone marrow derived stem cells can participate in liver regeneration as well. In this study we examined the role of SDF-1alpha and its receptor CXCR4 as a possible mechanism for oval cell activation in oval cell aided liver regeneration. In massive liver injury models where oval cell repair is involved hepatocytes up-regulate the expression of SDF-1alpha, a potent chemoattractant for hematopoietic cells. However, when moderate liver injury occurs, proliferation of resident hepatocytes repairs the injury. Under these conditions SDF-1alpha expression is not up-regulated and oval cells are not activated in the liver. In addition, we show that oval cells express CXCR4, the only known receptor for SDF-1alpha. Lastly, in vitro chemotaxis assays demonstrated that oval cells migrate along a SDF-1alpha gradient which suggests that the SDF-1alpha/CXCR4 interaction is a mechanism by which the oval cell compartment could be activated and possibly recruit a second wave of bone marrow stem cells to the injured liver. In conclusion, these experiments begin to shed light on a possible mechanism, which may someday lead to a better understanding of the hepatic and hematopoietic interaction in oval cell aided liver regeneration.  相似文献   

19.
We investigated the effect of an isocaloric maternal low-protein diet during pregnancy in rats on the proliferative capacity of cultured fetal hepatocytes. The potential roles of these changes on the IGF-IGF-binding protein (IGFBP) axis, and the role of insulin and glucocorticoids in liver growth retardation, were also evaluated. Pregnant Wistar rats were fed a control (C) diet (20% protein) or a low-protein (LP) diet (8%) throughout gestation. In primary culture, the DNA synthesis of hepatocytes derived from LP fetuses was decreased by approximately 30% compared with control hepatocytes (P < 0.05). In parallel, in vivo moderate protein restriction in the dam reduced the fetal liver weight and IGF-I level in fetal plasma (P < 0.01) and augmented the abundance of 29- to 32-kDa IGFBPs in fetal plasma (P < 0.01) and fetal liver (P < 0.01). By contrast, the abundance of IGF-II mRNA in liver of LP fetuses was unaffected by the LP diet. In vitro, the LP-derived hepatocytes produced less IGF-I (P < 0.01) and more 29- to 32-kDa IGFBPs (P < 0.01) than hepatocytes derived from control fetuses. These alterations still appeared after 3-4 days of culture, indicating some persistence in programming. Dexamethasone treatment of control-derived hepatocytes decreased cell proliferation (54 +/- 2.3%, P < 0.01) and stimulated 29- to 32-kDa IGFBPs, whereas insulin promoted fetal hepatocyte growth (127 +/- 5.5%, P < 0.01) and inhibited 29- to 32-kDa IGFBPs. These results show that liver growth and cell proliferation in association with IGF-I and IGFBP levels are affected in utero by fetal undernutrition. It also suggests that glucocorticoids and insulin may modulate these effects.  相似文献   

20.
In rodent livers, integral tight junction (TJ) proteins claudin-1, -2, -3, -5 and -14 are detected and play crucial roles in the barrier to keep bile in bile canaculi away from the blood circulation. Claudin-2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, whereas claudin-1 and -3 are expressed in the whole liver lobule. Although claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, the physiological functions and regulation of claudin-2 in hepatocytes remain unclear. Oncostatin M (OSM) is a multifunctional cytokine implicated in the differentiation of hepatocytes that induces formation of E-cadherin-based adherens junctions in fetal hepatocytes. In this study, we examined whether OSM could induce expression and function of claudin-2 in rodent hepatocytes, immortalized mouse and primary cultured proliferative rat hepatocytes. In the immortalized mouse and primary cultured proliferative rat hepatocytes, treatment with OSM markedly increased mRNA and protein of claudin-2 together with formation of developed networks of TJ strands. The increase of claudin-2 enhanced the paracellular barrier function which depended on molecular size. The increase of claudin-2 expression induced by OSM in rodent hepatocytes was regulated through distinct signaling pathways including PKC. These results suggest that expression of claudin-2 in rodent hepatocytes may play a specific role as controlling the size of paracellular permeability in the barrier to keep bile in bile canaculi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号