首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G Christofori  W Keller 《Cell》1988,54(6):875-889
We have separated and purified three factors from HeLa cell nuclear extracts that together can accurately cleave and polyadenylate pre-mRNAs containing the adenovirus L3 polyadenylation site. One of the factors is a poly(A) polymerase with a molecular weight of approximately 50-60 kd. The second activity is a cleavage factor with a native molecular weight in the range of 70-120 kd. The third component is a factor (cleavage and polyadenylation factor, CPF) that is needed for the cleavage reaction and, in addition, confers specificity to the poly(A) polymerase activity; the native molecular weight of CPF is approximately 200 kd. Poly(A) polymerase together with CPF is sufficient to specifically polyadenylate pre-mRNA substrates that have been precleaved at the poly(A) addition site. In contrast, all three components are required for accurate cleavage and polyadenylation of pre-mRNA substrates. Further purification of CPF by buoyant density centrifugation, ion exchange, and affinity column chromatography or by gel filtration demonstrates that CPF activity resides in a ribonucleoprotein and copurifies with U11 snRNP.  相似文献   

2.
Cleavage and polyadenylation of yeast precursor RNA require at least four functionally distinct factors (cleavage factor I [CF I], CF II, polyadenylation factor I [PF I], and poly(A) polymerase [PAP]) obtained from yeast whole cell extract. Cleavage of precursor occurs upon combination of the CF I and CF II fractions. The cleavage reaction proceeds in the absence of PAP or PF I. The cleavage factors exhibit low but detectable activity without exogenous ATP but are stimulated when this cofactor is included in the reaction. Cleavage by CF I and CF II is dependent on the presence of a (UA)6 sequence upstream of the GAL7 poly(A) site. The factors will also efficiently cleave precursor with the CYC1 poly(A) site. This RNA does not contain a UA repeat, and processing at this site is thought to be directed by a UAG...UAUGUA-type motif. Specific polyadenylation of a precleaved GAL7 RNA requires CF I, PF I, and a crude fraction containing PAP activity. The PAP fraction can be replaced by recombinant PAP, indicating that this enzyme is the only factor in this fraction needed for the reconstituted reaction. The poly(A) addition step is also dependent on the UA repeat. Since CF I is the only factor necessary for both cleavage and poly(A) addition, it is likely that this fraction contains a component which recognizes processing signals located upstream of the poly(A) site. The initial separation of processing factors in yeast cells suggests both interesting differences from and similarities to the mammalian system.  相似文献   

3.
4.
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.  相似文献   

5.
The molecular mechanism of mRNA degradation in the chloroplast consists of sequential events including endonucleolytic cleavage, the addition of poly(A)-rich sequences to the endonucleolytic cleavage products, and exonucleolytic degradation by polynucleotide phosphorylase (PNPase). In Escherichia coli, polyadenylation is performed mainly by poly(A)-polymerase (PAP) I or by PNPase in its absence. While trying to purify the chloroplast PAP by following in vitro polyadenylation activity, it was found to copurify with PNPase and indeed could not be separated from it. Purified PNPase was able to polyadenylate RNA molecules with an activity similar to that of lysed chloroplasts. Both activities use ADP much more effectively than ATP and are inhibited by stem-loop structures. The activity of PNPase was directed to RNA degradation or polymerization by manipulating physiologically relevant concentrations of P(i) and ADP. As expected of a phosphorylase, P(i) enhanced degradation, whereas ADP inhibited degradation and enhanced polymerization. In addition, searching the complete Arabidopsis genome revealed several putative PAPs, none of which were preceded by a typical chloroplast transit peptide. These results suggest that there is no enzyme similar to E. coli PAP I in spinach chloroplasts and that polyadenylation and exonucleolytic degradation of RNA in spinach chloroplasts are performed by one enzyme, PNPase.  相似文献   

6.
Poly(A) polymerases (PAPs) from HeLa cell cytoplasmic and nuclear fractions were extensively purified by using a combination of fast protein liquid chromatography and standard chromatographic methods. Several forms of the enzyme were identified, two from the nuclear fraction (NE PAPs I and II) and one from the cytoplasmic fraction (S100 PAP). NE PAP I had chromatographic properties similar to those of S100 PAP, and both enzymes displayed higher activities in the presence of Mn2+ than in the presence of Mg2+, whereas NE PAP II was chromatographically distinct and had approximately equal levels of activity in the presence of Mn2+ and Mg2+. Each of the enzymes, when mixed with other nuclear fractions containing cleavage or specificity factors, was able to reconstitute efficient cleavage and polyadenylation of pre-mRNAs containing an AAUAAA sequence element. The PAPs alone, however, showed no preference for precursors containing an intact AAUAAA sequence over a mutated one, providing further evidence that the PAPs have no intrinsic ability to recognize poly(A) addition sites. Two additional properties of the three enzymes suggest that they are related: sedimentation in glycerol density gradients indicated that the native size of each enzyme is approximately 50 to 60 kilodaltons, and antibodies against a rat hepatoma PAP inhibited the ability of each enzyme to function in AAUAAA-dependent polyadenylation.  相似文献   

7.
Almost all eukaryotic mRNAs acquire a poly(A) tail at the 3′-end by a concerted RNA processing event: cleavage and polyadenylation. The canonical PAP, PAPα, was considered the only nuclear PAP involved in general polyadenylation of mRNAs. A phosphoinositide-modulated nuclear PAP, Star-PAP, was then reported to regulate a select set of mRNAs in the cell. In addition, several non-canonical PAPs have been identified with diverse cellular functions. Further, canonical PAP itself exists in multiple isoforms thus illustrating the diversity of PAPs. In this review, we compare two nuclear PAPs, Star-PAP and PAPα with a general overview of PAP diversity in the cell. Emerging evidence suggests distinct niches of target pre-mRNAs for the two PAPs and that modulation of these PAPs regulates distinct cellular functions.  相似文献   

8.
Star-PAP is a poly (A) polymerase (PAP) that is putatively required for 3'-end cleavage and polyadenylation of a select set of pre-messenger RNAs (mRNAs), including heme oxygenase (HO-1) mRNA. To investigate the underlying mechanism, the cleavage and polyadenylation of pre-mRNA was reconstituted with nuclear lysates. siRNA knockdown of Star-PAP abolished cleavage of HO-1, and this phenotype could be rescued by recombinant Star-PAP but not PAPα. Star-PAP directly associated with cleavage and polyadenylation specificity factor (CPSF) 160 and 73 subunits and also the targeted pre-mRNA. In vitro and in vivo Star-PAP was required for the stable association of CPSF complex to pre-mRNA and then CPSF 73 specifically cleaved the mRNA at the 3'-cleavage site. This mechanism is distinct from canonical PAPα, which is recruited to the cleavage complex by interacting with CPSF 160. The data support a model where Star-PAP binds to the RNA, recruits the CPSF complex to the 3'-end of pre-mRNA and then defines cleavage by CPSF 73 and subsequent polyadenylation of its target mRNAs.  相似文献   

9.
Previous studies have demonstrated that Ara-ATP can inhibit poly(A) polymerase activity by competing with ATP. To elucidate the mechanism of action of this compound, its effect on the cleavage and polyadenylation of two specific substrates, SV40L and adenovirus L3 pre-mRNAs, was studied in HeLa nuclear extracts. Unlike cordycepin 5' triphosphate, Ara-ATP inhibited both cleavage and poly(A) addition. Addition of poly(A) polymerase fraction devoid of any other factors required for the processing reactions overcame the inhibitory effect on cleavage as well as polyadenylation of pre-mRNAs. These data suggest that Ara-ATP inhibits both cleavage and polyadenylation reactions by interacting with the ATP-binding site on poly(A) polymerase, the activity of which is essential for the cleavage reaction. Ara-ATP also blocked formation of the post-cleavage and polyadenylation-specific complexes, which further confirmed the inhibitory effect of the ATP analog on the two tightly coupled 3'-end processing reactions.  相似文献   

10.
11.
The 3' ends of nearly all eukaryotic pre-mRNAs undergo cleavage and polyadenylation, thereby acquiring a poly(A) tail added by the enzyme poly(A) polymerase (PAP). Two well-characterized examples of regulated poly(A) tail addition in the nucleus consist of spliceosomal proteins, either the U1A or U170K proteins, binding to the pre-mRNA and inhibiting PAP via their PAP regulatory domains (PRDs). These two proteins are the only known examples of this type of gene regulation. On the basis of sequence comparisons, it was predicted that many other proteins, including some members of the SR family of splicing proteins, contain functional PRDs. Here we demonstrate that the putative PRDs found in the SR domains of the SR proteins SRP75 and U2AF65, via fusion to a heterologous MS2 RNA binding protein, specifically and efficiently inhibit PAP in vitro and pre-mRNA polyadenylation in vitro and in vivo. A similar region from the SR domain of SRP40 does not exhibit these activities, indicating that this is not a general property of SR domains. We find that the polyadenylation- and PAP-inhibitory activity of a given polypeptide can be accurately predicted based on sequence similarity to known PRDs and can be measured even if the polypeptides' RNA target is unknown. Our results also indicate that PRDs function as part of a network of interactions within the pre-mRNA processing complex and suggest that this type of regulation will be more widespread than previously thought.  相似文献   

12.
13.
Using a pre-RNA containing the simian virus 40 early introns and poly(A) addition site, we investigated several possible requirements for accurate and efficient mRNA 3' end cleavage and polyadenylation in a HeLa cell nuclear extract. Splicing and 3' end formation occurred under the same conditions but did not appear to be coupled in any way in vitro. Like splicing, 3' end cleavage and polyadenylation each required Mg2+, although spermidine could substitute in the cleavage reaction. Additionally, cleavage of this pre-RNA, but not others, was totally blocked by EDTA, indicating that structural features of pre-RNA may affect the ionic requirements of 3' end formation. The ATP analog 3' dATP inhibited both cleavage and polyadenylation even in the presence of ATP, possibly reflecting the coupled nature of these activities. A 5' cap structure appears not to be required for mRNA 3' end processing in vitro because neither the presence or absence of a 5' cap on the pre-RNA nor the addition of cap analogs to reaction mixtures had any effect on the efficiency of 3' end processing. Micrococcal nuclease pretreatment of the nuclear extract inhibited cleavage and polyadenylation. However, restoration of activity was achieved by addition of purified Escherichia coli RNA, suggesting that the inhibition caused by such a nuclease treatment was due to a general requirement for mass of RNA rather than to destruction of a particular nucleic acid-containing component such as a small nuclear ribonucleoprotein.  相似文献   

14.
Exogenous RNA containing the simian virus 40 early polyadenylation site was efficiently and accurately polyadenylated in in vitro nuclear extracts. Correct cleavage required ATP. In the absence of ATP, nonpoly(A)+ products accumulated which were 18 to 20 nucleotides longer than the RNA generated by correct cleavage; the longer RNA terminated adjacent to the downstream TG element required for polyadenylation. In the presence of ATP analogs, alternate cleavage was not observed; instead, correct cleavage without poly(A) addition occurred. ATP-independent cleavage of simian virus 40 early RNA had many of the same properties as correct cleavage including requirements for an intact AAUAAA element, a proximal 3' terminus, and extract small nuclear ribonucleoproteins. This similarity in reaction parameters suggested that ATP-independent cleavage is an activity of the normal polyadenylation machinery. The ATP-independent cleavage product, however, did not behave as an intermediate in polyadenylation. The alternate RNA did not preferentially chase into correctly cleaved material upon readdition of ATP; instead, poly(A) was added to the 3' terminus of the cleaved RNA during a chase. Purified ATP-independent cleavage RNA, however, was a substrate for correct cleavage when reintroduced into the nuclear extract. Thus, alternate cleavage of polyadenylation sites adjacent to a required downstream sequence element is directed by the polyadenylation machinery in the absence of ATP.  相似文献   

15.
In Saccharomyces cerevisiae, four factors [cleavage factor I (CF I), CF II, polyadenylation factor I (PF I), and poly(A) polymerase (PAP)] are required for maturation of the 3' end of the mRNA. CF I and CF II are required for cleavage; a complex of PAP and PF I, which includes CF II subunits, participates in polyadenylation, along with CF I. These factors are directed to the appropriate site on the mRNA by two sequences: one A-rich and one UA-rich. CF I contains five proteins, two of which, Rna15 and Hrp1, interact with the mRNA through RNA recognition motif-type RNA binding motifs. Previous work demonstrated that the UV cross-linking of purified Hrp1 to RNA required the UA-rich element, but the contact point of Rna15 was not known. We show here that Rna15 does not recognize a particular sequence in the absence of other proteins. However, in complex with Hrp1 and Rna14, Rna15 specifically interacts with the A-rich element. The Pcf11 and Clp1 subunits of CF I are not needed to position Rna15 at this site. This interaction is essential to the function of CF I. A mutant Rna15 with decreased affinity for RNA is defective for in vitro RNA processing and lethal in vivo, while an RNA with a mutation in the A-rich element is not processed in vitro and can no longer be UV cross-linked to the Rna15 subunit assembled into CF I. Thus, the recognition of the A-rich element depends on the tethering of Rna15 through an Rna14 bridge to Hrp1 bound to the UA-rich motif. These results illustrate that the yeast 3' end is defined and processed by a mechanism surprisingly different from that used by the mammalian system.  相似文献   

16.
We have devised a simple chromatographic procedure which isolates five polyadenylation factors that are required for polyadenylation of eukaryotic mRNA. The factors were separated from each other by fractionation of HeLa cell nuclear extract in two consecutive chromatographic steps. RNA cleavage at the L3 polyadenylation site of human adenovirus 2 required at least four factors. Addition of adenosine residues required only two of these factors. The fractionation procedure separates two components that are both likely to be poly(A) polymerases. The candidate poly(A) polymerases were interchangeable and participated during both RNA cleavage and adenosine addition. They were discriminated from each other by chromatographic properties, heat sensitivity and divalent cation requirement. We have compared our data with published information and have been able to correlate the activities that we have isolated to previously identified polyadenylation factors. However, we have not been able to assign one of the candidate poly(A) polymerases to a previously identified poly(A) polymerase. This simple fractionation procedure can be used for generating an in vitro reconstituted system for polyadenylation within a short period of time.  相似文献   

17.
We developed a two-step purification of mammalian polyadenylation complexes assembled in vitro. Biotinylated pre-mRNAs containing viral or immunoglobulin poly(A) sites were incubated with nuclear extracts prepared from mouse myeloma cells under conditions permissive for in vitro cleavage and polyadenylation and the mixture was fractionated by gel filtration; complexes containing biotinylated pre-mRNA and bound proteins were affinity purified on avidin-agarose resin. Western analysis of known components of the polyadenylation complex demonstrated copurification of polyadenylation factors with poly(A) site-containing RNA but not with control RNA substrates containing either no polyadenylation signals or a point mutation of the AAUAAA polyadenylation signal. Polyadenylation complexes that were assembled on exogenous RNA eluted from the Sephacryl column in fractions consistent with their size range extending from 2 to 4 x 10(6) Mr. Complexes endogenous to the extract were of approximately the same apparent size, but more heterogeneous in distribution. This method can be used to study polyadenylation/cleavage complexes that may form upon a number of different RNA sequences, an important step towards defining which factors might differentially associate with specific RNAs.  相似文献   

18.
Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation.  相似文献   

19.
A polyadenylate polymerase involved in the polyadenylation of pre-mRNA has been purified 6,000-fold to apparent homogeneity from extracts of calf thymus. In the last purification step, anion exchange chromatography separates the enzyme into three major peaks that are indistinguishable by other physical or functional criteria. On denaturing polyacrylamide gels, the two predominant forms of poly(A) polymerase have molecular weights of 57,000 and 60,000. In solution, the enzyme is a monomer. It polymerizes exclusively ATP. The reaction is distributive and proceeds linearly without any lag phase. The requirement for a primer can be satisfied by any of a number of polyribonucleotides. A significantly higher activity in the presence of Mn2+ as opposed to Mg2+ is due to a hundredfold higher affinity for the primer terminus. In the presence of mg2+ and of a specificity factor partially purified from HeLa cells, the enzyme specifically polyadenylates an RNA that ends at the natural adenovirus L3 polyadenylation site. This reaction depends on the AAUAAA polyadenylation signal.  相似文献   

20.
Polyadenylation of RNA molecules in bacteria and chloroplasts has been implicated as part of the RNA degradation pathway. The polyadenylation reaction is performed in Escherichia coli mainly by the enzyme poly(A) polymerase I (PAP I). In order to understand the molecular mechanism of RNA polyadenylation in bacteria, we characterized the biochemical properties of this reaction in vitro using the purified enzyme. Unlike the PAP from yeast nucleus, which is specific for ATP, E.coli PAP I can use all four nucleotide triphosphates as substrates for addition of long ribohomopolymers to RNA. PAP I displays a high binding activity to poly(U), poly(C) and poly(A) ribohomopolymers, but not to poly(G). The 3′-ends of most of the mRNA molecules in bacteria are characterized by a stem–loop structure. We show here that in vitro PAP I activity is inhibited by a stem–loop structure. A tail of two to six nucleotides located 3′ to the stem–loop structure is sufficient to overcome this inhibition. These results suggest that the stem–loop structure located in most of the mRNA 3′-ends may function as an inhibitor of polyadenylation and degradation of the corresponding RNA molecule. However, RNA 3′-ends produced by endonucleolytic cleavage by RNase E in single-strand regions of mRNA molecules may serve as efficient substrates for polyadenylation that direct these molecules for rapid exonucleolytic degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号