首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli cells made permeable to deoxynucleoside triphosphates by brief treatment with toluene (permeablized) were used to measure the effect of the following chemical alkylating agents on either DNA replication or DNA repair synthesis: methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG). Replication of DNA in this pseudo-in vivo system was completely inhibited 10–15 min after exposure to MMS at concentrations of 5 mM or higher or to MNU or MNNG at concentrations of 1 mM or higher. The ethyl derivatives of the alkylating agents were less inhibitory than their corresponding methyl derivatives, and inhibition of DNA replication occurred in the following order: EMS < ENNG < ENU. Maximum inhibition of DNA replication by all of the alkylating agents tested except EMS occurred at a concentration of 20 mM or lower. The extent of replication in cells exposed to EMS continued to decrease with concentrations of EMS up to 100 mM (the highest concentration tested).The experiments in which the inhibition of DNA replication by MMS, MNU, or MNNG was measured were repeated under similar assay conditions except that a density label was included and the DNA was banded in CsCl gradients. The bulk of the newly synthesized DNA from the untreated cells was found to be of the replicative (semi-conservative) type. The amount of replicative DNA decreased with increasing concentration of methylating agent in a manner similar to that observed in the incorporation experiments.Polymerase I (Pol I)-directed DNA repair synthesis induced by X-irradiation of permeablized cells was assayed under conditions that blocked the activity of DNA polymerases II and III. Exposure of cells to MNNG or ENNG at a concentration of 20 mM resulted in reductions in Pol I activity of 40 and 30%, respectively, compared with untreated controls. ENU was slightly inhibitory to Pol I activity, while MMS, EMS, and MNU all caused some enhancement of Pol I activity.These data show that DNA replication in a pseudo-in vivo bacterial system is particularly sensitive to the actions of known chemical mutagens, whereas DNA repair carried out by the Pol I repair enzyme is much less sensitive and in some cases apparently unaffected by such treatment. Possible mechanisms for this differential effect on DNA metabolism and its correlation with current theories of chemically induced mutagenesis and carcinogenesis are discussed.  相似文献   

2.
Mutagenic and error-free DNA repair in Streptomyces   总被引:2,自引:0,他引:2  
Summary Two mutants of Streptomyces fradiae defective in DNA repair have been characterized for their responses to the mutagenic and lethal effects of several chemical mutagens and ultraviolet (UV) light. S. fradiae JS2 (mcr-2) was more sensitive than wild type to agents which produce bulky lesions resulting in large distortions of the double helix [i.e. UV-light, 4-nitroquinoline-1-oxide (NQO), and mitomycin C (MC)] but not to agents which produce small lesions [i.e. hydroxylamine (HA), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG)]. JS2 expressed a much higher frequency of mutagenesis induced by UV-light at low doses and thus appeared to be defective in an error-free excision repair pathway for bulky lesions analogous to the uvr ABC pathway of Escherichia coli. S. fradiae JS4 (mcr-4) was defective in repair of damage by most agents which produce small or bulky lesions (i.e., HA, NQO, MMS, MNNG, MC, and UV, but not EMS). JS4 was slightly hypermutable by EMS and MMS but showed reduced mutagenesis by NQO and HA. This unusual phenotype suggests that the mcr-4 + protein plays some role in error-prone repair in S. fradiae.  相似文献   

3.
When Syrian hamster embryo cells were pretreated with a weak chemical carcinogen, methyl methanesulfonate (MMS) or ethyl methanesulfonate (EMS), or with a physical agent such as X-irradiation prior to being exposed to a potent cancer-producing chemical, transformation (crisscrossing of cells not seen in control) occurred up to nine times more often than when the cells were not pretreated. The degree of enhancement appears independent of carcinogen dose. The transformation frequency associated with the carcinogens benzo(a)pyrene (BP), dimethylbenz(a)anthracene (DMBA), 3-methylcholanthrene (MCA), N-acetoxy-2-acetylaminofluorene (AcAAF), and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was increased. There are similarities in the enhancement produced by pretreatment of hamster cells with X-irradiation and with alkylating agents: with both, maximum enhancement occurred approx. 48 h after treatment and lethality attributable to the pretreatment was 10–20% relative to control. However, enhancement produced by X-irradiation pretreatment was slightly greater than that obtained with MMS. The exact cause of the enhancement in transformation resulting from the interaction of these agents is not yet known, but the enhancement associated with MMS pretreatment cannot be related to partial cell synchronization or disruption in the cell cycle. Hamster cells pretreated with 250 μM of MMS demonstrated no alteration in normal cel DNA synthesis through 48-h post-treatment. Analysis of unscheduled DNA synthesis by autoradiography or by alkaline sucrose gradients indicated that the damaged DNA was rapidly repaired after treatment. Therefore, repair of DNA damage as it is now understood is probably not involved.  相似文献   

4.
Summary The lethal and mutagenic effects of methyl methanesulphonate (MMS), ethyl methanesulphonate (EMS), and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) can be dissociated in a mitomycin C (MTC)-sensitive mutant, strain 302, of Micrococcus radiodurans.As regards lethality 302 is extremely sensitive, compared with the wild type, to MTC and decarbamoyl MTC (DCMTC), slightly sensitive to EMS, MNNG, nitrous acid, 7-bromomethylbenz {} anthracene (BrMBA), and N-acetoxy-N-2-acetylaminofluorene (AAAF), and resistant to MMS, hydroxylamine, and ICR 191G. As regards mutability it is, compared to the wild type, very sensitive to MMS, EMS, and MNNG, and slightly sensitive to hydroxylamine and nitrous acid but not to any other agent examined.Alkaline sucrose gradient studies indicate that 302 does not incise DNA containing BrMBA adducts, although it does incise DNA damaged by AAAF but probably not to the same extent as wild type.We put forward the hypothesis that the hypermutability of 302 is due to the non-removal of bases or nucleotides, modified in exocyclic positions, which have altered base-pairing capabilities, while lethality results from the non-removal of bases or nucleotides, also modified in exocyclic positions, which no longer form hydrogen-bonded base pairs.  相似文献   

5.
N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and methyl methanesulfonate (MMS) are directly active alkylating agents that methylate cellular macromolecules by SN1 and SN2 mechanisms, respectively. These two chemicals produce similar types of alkylation products in DNA and a similar level of total alkylations on a molar basis, but strikingly different proportions of alkylations of ring oxygen atoms of purines and pyrimidines. Because of this attribute, they have been used in combination to attempt to determine which types of alkylation products are responsible for mutation, transformation, and toxicity. Studies have suggested that the mutation rates produced by these and similar chemicals in cells surviving toxicity correlate well with the number of methyl adducts at the O6 position of guanine, but that cytotoxicity (reduced colony-forming efficiency) does not correlate with any single adduct or with the total level of alkylation of DNA. In this study we have investigated the cytotoxic mechanisms of MNNG and MMS in synchronized 10T1/2 cells, using colony-forming ability as a measure of toxicity. Both MNNG and MMS cause dose-dependent reduction in the ability of 10T1/2 cells to produce colonies of more than 50 cells after 2 weeks in culture. MNNG is about 100-fold more toxic than MMS on a molar basis. As indicated by the inability of cells to exclude trypan blue, MMS kills a fraction of the population of treated 10T1/2 cells after a 30-min exposure; the fraction of cells that excludes trypan blue is correlated with dose of MMS and with colony-forming efficiency. Neither the fraction of cells that is permeable to trypan blue nor the relative colony-forming efficiency is affected by the phase of the cycle when 10T1/2 cells are treated with MMS. Furthermore, MMS toxicity for 10T1/2 cells is not potentiated by caffeine, MMS treatment does not delay progress of S phase, and cells that survive acute membrane toxicity complete the cell cycle without significant delay. In contrast, MNNG treatment produces toxicity that is maximal when 10T1/2 cells are exposed during the S phase and the effect of potentiated by caffeine. MNNG treatment delays DNA replication and this delay is reversed by caffeine. In sharp contrast to 10T1/2 cells treated with MMS. MNNG-treated cells are not made permeable to trypan blue, but are blocked in their ability to proliferate. These observations indicate that MNNG and MMS kill 10T1/2 cells by drastically different mechanisms, MNNG producing toxicity mainly by preventing chromosome replication and MMS producing toxicity mainly by damaging cell membranes.  相似文献   

6.
Cell killing by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), and methyl methanesulfonate (MMS) was measured in Chinese hamster ovary (CHO) cells using the colony-formation assay. Cell killing by these agents was determined in exponentially growing asynchronous cells, in synchronous cells as a function of cell-cycle position and in nondividing cells. Distinct differences in the cytotoxic effect of the 4 alkylating agents were found in respect to dose-response, cell cycle phase-sensitivity and growth state. MNNG and MNU showed the same biphasic dose-survival relationship in exponentially growing cells, with an initial steep decline followed by a shallow component. The shallow component disappeared in growth-arrested cells. MNNG and MNU differed, however, in the cell-cycle age response. No cell-cycle phase difference was seen with MNNG, whereas cells in G1 seemed more sensitive to MNU than cells in S phase. MMS and ENU both showed shouldered dose-response curves for exponentially growing asynchronous cells, and the same cell-cycle pattern for synchronous cultures with cells in early S phase being the most sensitive. However, survival of nondividing cells versus dividing cells was reduced much more by MMS than by ENU. Caffeine, which interferes with the regulation of DNA synthesis and is known to modify cell killing by DNA-damaging agents, enhanced cell killing by all agents. It is concluded that there must be a number of factors which contribute to cell killing by monofunctional alkylating agents, and that besides alkylation of DNA reaction with other cellular macromolecules should be considered.  相似文献   

7.
Antimutagenic effects of cinnamaldehyde on mutagenesis by chemical agents were investigated in Escherichia coli WP2 uvrA- trpE-. Cinnamaldehyde, when added to agar medium, greatly reduced the number of Trp+ revertants induced by 4-nitroquinoline 1-oxide (4-NQO) without any decrease of cell viability. This antimutagenic effect could not be explained by inactivation of 4-NQO caused by direct interaction with cinnamaldehyde. Mutagenesis by furylfuramide (AF-2) was also suppressed significantly. Mutations induced by methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) were slightly inhibited. However, cinnamaldehyde was not at all effective on the mutagenesis of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Two derivatives of cinnamaldehyde, cinnamyl alcohol and trans-cinnamic acid, did not have as strong antimutagenic effects on 4-NQO mutagenesis as cinnamaldehyde had. Because cinnamaldehyde showed marked antimutagenic effects against mutations induced by UV-mimic mutagens but not those induced by MNNG or EMS, it seems that cinnamaldehyde might act by interfering with an inducible error-prone DNA repair pathway.  相似文献   

8.
E M Faustman  Z Kirby  D Gage  M Varnum 《Teratology》1989,40(3):199-210
Five direct-acting alkylating agents were examined qualitatively and quantitatively for their ability to produce developmental toxicity in rodent postimplantation embryos. These agents were structurally related and were capable of donating either a methyl (methylnitrosourea, MNU; methylnitronitrosoguanidine, MNNG; methyl methanesulfonate, MMS) or ethyl (ethylnitrosourea, ENU; ethyl methanesulfonate, EMS) group to nucleophiles. These agents' reactivities were known to differ. In day 10 rat embryos in vitro a single, 2-hour exposure was shown to be sufficient to elicit dose-dependent increases in embryo lethality and malformations. Qualitatively, the patterns of embryo malformations reported in treated embryos paralleled those observed in in vivo studies, especially in regard to adverse effects on central nervous system and craniofacial systems. Quantitatively, the order of potency of these agents in vitro was: MNNG greater than MNU greater than ENU greater than MMS greater than EMS. In vivo studies reported a different order of potency. In vitro, methylating agents were consistently more potent than ethylating agents. Other chemical properties such as nucleophilic reactivity or half-life under physiological conditions could not explain observed potency relationships. Future investigation of other chemical properties of these agents such as specific alkylation and carbamylation reactivities may expand these initial structure-activity observations.  相似文献   

9.
For studying, in vivo, chromosomal damage in bone-marrow cells of CD mice the following compounds were used: Trenimon®; Endoxanm® (cyclophosphamide); triethylenemelamine (TEM); methyl methanesulfonate (MMS); ethyl methanesulfonate (EMS); mitomycin C; colchicine; N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and caffeine. In a first set of experiments the compounds were given twice intraperitoneally with an interval of 24 h. In a second set, effects on bone marrow were studied after 2 i.v. or p.o. administrations of TEM or EMS. All compounds except MNNG and caffeine produced bone-marrow depression and micronuclei, depending on the dose. For the active compounds an interesting difference was revealed by a comparison of the lowest effective dose (as measured by micronuclei formation) with the lethal dose. Trenimon, TEM, cyclophosphamide and MMS (some of which are used in human chemotherapy in similar mg/kg doses) were active on mouse bone-marrow at very low doses compared with their lethal doses. On the other hand, colchicine, mitomycin C and EMS exhibited an effect only at doses very close to, or within, the toxic range. Different routes of administration of either TEM or EMS produced similar effects.The results indicate that the test is especially suitable for initial large-scale screening of suspected chromosomal mutagens and spindle poisons. In addition, the use of the relationship between doses required to induce micronuclei and lethal doses in mice provides a practical measure of the relative potencies of such compounds.  相似文献   

10.
It is known that UV, X-rays, MMC and MMS are not mutagenic for H. influenzae, whereas HZ, EMS and MNNG are potent mutagens for this bacterium. All of these agents, however, are known to be both mutagenic and able to induce prophage in E. coli. We report here that all the agents except HZ induce prophage in H. influenzae, and EMS even induces in the recombination-defective recl mutant, which is non-inducible by UV, MMC, MNNG and MMS. MMS did not cause single-strand breaks or gaps in DNA synthesized after treatment of H. influenzae, but EMS and MNNG produced them. EMS caused more breaks in DNA synthesized before treatment than in that synthesized after treatment. On the other hand we did observe such breaks or gaps induced in E. coli in DNA synthesized posttreatment by EMS as well as by MMS and MNNG, at comparable survival levels.  相似文献   

11.
N-Methyl-N′-nitro-N-nitrosoguanidine efficiently induces mutations from “clear” to “virulent” in phage λ only during the intracellular growth phase. Lambda DNA extracted from infected bacteria after treatment with MNNG3 produced a mutant yield about 100-fold higher than the spontaneous level upon transfection of MNNG-treated spheroplast cells, whereas the yield diminished an order of magnitude when assayed on untreated spheroplasts. As measured by 14C incorporation after treatment with [methyl-14C]MNNG, λ DNA packed in head protein was methylated to about 3% by an MNNG dose of 0.6 mg/ml but was barely mutagenised; whereas intracellular λ DNA was methylated to no more than 0.6% by an MNNG dose of 0.09 mg/ml and was highly mutagenised. Lambda phages treated in vitro with ethyl methanesulfonate produced a rather low mutant yield on untreated cells but the yield increased about tenfold on MNNG-treated cells. Mutability of untreated λ on cells having received an F′ factor was enhanced efficiently by ultraviolet light, but not so by MNNG, previously applied to the F′. Surprisingly similar MNNG dose-effect curves exist for enhancing spontaneous, mispairing (MNNG or EMS induced) and misrepair (ultraviolet light induced) mutagenesis of λ. From these and other data we conclude that MNNG hypermutagenesis results from a synergistic increase in mispairing probability of appropriately methylated bases (by action of MNNG in vivo) in the target gene within an MNNG-induced intracellular environment that has an enhanced mutagenic capacity.  相似文献   

12.
Summary In this report we present genetic and biochemical evidence indicating that the aidD6: : Mu dl (bla lac) fusion is an insertion of Mu dl (bla lac) into the alkB coding sequence. We describe the phenotypic effects resulting from this mutation and compare them with the effects of alkB22, alkA and ada mutations. We also constructed an alkA alkB double mutant and compared its phenotype with that of the single mutant strains. The observation that the methyl methanesulfonate (MMS) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) resistance of the double mutant is approximately at the level predicted from the additive sensitivity of each of the single mutants suggests that these two gene products act in different pathways of DNA repair.  相似文献   

13.
V. Zachleder  S. Kawano  T. Kuroiwa 《Protoplasma》1995,188(3-4):245-251
Summary DNA containing structures (cellular, chloroplast and mitochondrial nuclei) were stained with the fluorochrome DAPI. Fluorescence intensity, as a measure of DNA content, was estimated during the mitotic cycle in synchronized populations of the chlorococcal alga,Scenedesmus quadricauda. In cells yielding eight daughter cells, three consecutive steps in chloroplast DNA increase occurred over one mitotic cycle. The first step was performed shortly after releasing the daughter cells, the second and third steps occurred consecutively during the first half of the mitotic cycle. Commitment to chloroplast DNA replication was chronologically separated from commitment to division of chloroplast nuclei, revealing that these two chloroplast reproductive steps were under different control mechanisms. The replication of chloroplast DNA occurred at a different time to that of cell-nuclear DNA. The coordination of chloroplast reproductive processes and those in the nucleocytoplasmic compartment were governed by the mutual trophic and metabolic dependency of these compartments rather than by any direct or feedback control controlled by either of them.Abbreviations DAPI 46-diamidino-2-phenylindole - ptDNA DNA in chloroplast nuclei - nucDNA DNA in cell nuclei  相似文献   

14.
The combined effects of methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) on the induction of 6-thioguanine (6TG)-resistant mutants and chromosome aberrations were examined in Chinese hamster V79 cells. Cells were simultaneously treated with EMS at a concentration of D20 and MMS at various concentrations for 3, 6 or 9 h. In other experiments cells were simultaneously treated with MMS at a concentration of D20 and EMS at various concentrations for 3, 6 or 9 h. The mathematical analysis of the combined effects of both chemicals for cell killing (cytotoxicity) and 6TG-resistant mutations indicates that synergistic interactions were observed for both cell killing and mutations induced by MMS and EMS. The frequency of chromosome aberrations induced by simultaneous treatment with MMS at a concentration of D20 and EMS at various concentrations for 3 h was additive. However, the frequency of chromosome aberrations induced by EMS at a concentration of D20 and MMS at various concentrations for 3 h was not significantly different from those induced by MMS alone.  相似文献   

15.
Nine human tumor cell lines derived from both epithelial and mesenchymal tumors exhibited either an anchorage-independent growth non-tumorigenic phenotype or an anchorage-independent tumorigenic phenotype. Transformed epithelial cell lines with the non-tumorigenic phenotype could be converted to a progressively growing tumor phenotype following treatment with either methylmethane sulfonate (MMS) or N-methyl-N-nitro-N-nitrosoguanidine (MNNG). In contrast, sarcoma derived cell lines with a non-tumorigenic phenotype could be converted to a progressively growing tumor phenotype only with MNNG. SV40 immortalized HET-1A non-tumorigenic phenotype cells could be converted to a progressively growing tumorigenic phenotype, infrequently, when treated with MNNG, but not MMS. Progressively growing tumors produced by either MMS or MNNG treated non-tumorigenic phenotypes exhibited metastatic potential in nude mice. Chemically treated HET-1A cells acquired the ability to produce tumor in mice but the tumor did not exhibit metastatic potential. In contrast, populations of tumorigenic cells were not rendered more biologically aggressive after treatment with either MMS or MNNG; i.e., the latency period for tumor development was not accelerated and the tumors did not exhibit metastatic potential. These results suggest that the biological effects of MMS and MNNG on non-tumorigenic, tumorigenic and immortalized cell lines are phenotype specific.Abbreviations AIG anchorage-independent growth - DMSO dimethyl sulfoxide - FBS fetal bovine serum - GM growth medium - MEM Eagle's minimum essential medium - MMS methylmethane sulfonate - MNNG N-Methyl-N-Nitro-N-Nitrosoguanidine - PDL population doubling - SCC squamous cell carcinoma  相似文献   

16.
Chemical mutagenesis was employed for the isolation of variant cell lines resistant to L-Ethionine (L-Eth) in Vigna sinensis L. We have measured cell survival after treatment of Vigna sinensis cell suspensions with different mutagens: Ethyl methanesulfonate (EMS), N-methyl-N-nitrosoguanidine (NTG) and Acridine Orange (AO). NTG was more toxic than EMS and AO.L-Eth resistant colonies were isolated by plating on selective medium after NTG treatment. The frequencies of appearance of resistant cells of MS-3 media supplemented with 20 g/ml L-Eth were 1.3 × 10-6 to 1.8 × 10-5. The highest number of L-Eth resistant calli were recorded in cells treated with 10 g/ml NTG. Few resistant colonies also appeared spontaneously from non-mutagenized cultures with a frequency of 2.9 × 10-7 to 5.7 × 10-7. However, a number of isolated colonies were discarded after successive retesting. The number of resistant calli dropped from 204 to 22 during successive retests. The significance of these observations has also been discussed.  相似文献   

17.
We have studied the influence of anoxia and respiratory deficiency (RD) in yeast on the cytotoxic and recombinogenic effects of 5 direct-acting alkylating agents, namely N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methylnitrosourea (MNU), ethylnitrosourea (ENU), methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS). We found that the effects of both conditions parallel each other for MMS, MNNG, MNU and ENU. Both anoxia and RD did not modify the effects of MMS to any significant extent. On the other hand, anoxic and respiratory-deficient cells were found to be more resistant than euoxic and respiratory-proficient cells respectively for MNNG, MNU and ENU. In the case of EMS, which is similar to MMS in its chemical reaction with DNA, the respiratory-deficient cells were found to be more sensitive than the respiratory-proficient ones. These studies indicate that the response of anoxic and respiratory-deficient cells cannot be predicted solely on the basis of the chemical reactivity pattern of the alkylating agents. The physiological state which exists under these conditions may exert considerable influence on the cellular response.  相似文献   

18.
An established cell line of Chinese hamster ovary (CHO-9) cells and its UV-sensitive mutant 43-3B have been studied for the induction of cell killing, chromosomal aberrations and sister-chromatid exchanges (SCEs) after exposure to different types of DNA-damaging agents such as 4-nitroquinoline-1-oxide (4NQO), mitomycin C (MMC), diepoxybutane (DEB), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and ethyl nitrosourea (ENU). In comparison with the wild-type CHO cells, 43-3B cells showed very high sensitivity to the UV-mimetic agent 4NQO and the DNA cross-linking agents MMC and DEB. The 43-3B cells responded with higher sensitivity to the monofunctional alkylating agents (MMS, EMS and ENU). The increased cytotoxic effects of all these chemicals correlated well with the elevated increase in the frequency of chromosomal aberrations. In 43-3B cells exposed to 4NQO, MMC or DEB the increase in the frequency of chromosomal aberrations was much higher than the increase in the frequency of SCEs (4-10-fold) when compared to the wild-type CHO cells. This suggests that SCEs are results of fundamentally different cellular events. The responses of 43-3B cells to UV, 4NQO, MMC and DEB resemble those of 2 human syndromes, i.e., xeroderma pigmentosum and Fanconi's anemia. These data suggest that 43-3B cells are defective in excision repair as well as the other pathways involved in the repair of cross-links (MMC, DEB) and bulky DNA adducts (4NQO).  相似文献   

19.
Because of its characteristics, the comet assay has been used to evaluate the ability of virtually any type of eukaryotic cell to repair different kinds of DNA damage, including double and single strand breaks and base damage. The ability to detect excision repair sites using the alkaline version can be enhanced by the inclusion of repair inhibitors, DNA synthesis inhibitors, or chain terminators. In this sense, we evaluated the ability of hydroxyurea (HU) and cytosine arabinoside (Ara-C), for detecting lesions produced by the alkylating agents ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS) in three different cell systems. Two hundred cells for experimental point were analyzed in the alkaline version of the comet assay, and the results are evidences of the utility of the assay to detect alkylation of bases in the cells lines MRC-5 and TK-6, as the treatment with HU +Ara-C significantly increases both the basal and induced frequency of DNA damage. The use of whole blood, although it detected the effects of MMS, with and without repair inhibitors, failed to detect the effect of the selected dose of EMS and does not permit detection increases in the background level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号