首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

2.
In search for new drugs lowering arterial blood pressure, which could be applied in anti‐hypertensive therapy, research concerning agents blocking of renin‐angiotensin‐aldosteron system has been conducted. Despite many years of research conducted at many research centers around the world, aliskiren is the only one renin inhibitor, which is used up to now. Four novel potential renin inhibitors, having structure based on the peptide fragment 8–13 of human angiotensinogen, a natural substrate for renin, were designed and synthesized. All these inhibitors contain unnatural moieties that are derivatives of N‐methylleucyl‐β‐hydroxy‐γ‐amino acids at the P2‐P1' position: 4‐[N‐(N‐methylleucyl)‐amino]‐3‐hydroxy‐7‐(3‐nitroguanidino)‐heptanoic acid (AHGHA), 4‐[N‐(N‐methylleucyl)‐amino]‐3‐hydroxy‐5‐phenyl‐pentanoic acid (AHPPA) or 4‐[N‐(N‐methylleucyl)‐amino]‐8‐benzyloxycarbonylamino‐3‐hydroxyoctanoic acid (AAHOA). The previously listed synthetic β‐hydroxy‐γ‐amino acids constitute pseudodipeptidic units that correspond to the P1‐P1' position of the inhibitor molecule. An unnatural amino acid, 4‐methoxyphenylalanin (Phe(4‐OMe)), was introduced at the P3 position of the obtained compounds. Three of these compounds contain isoamylamide of 6‐aminohexanoic acid (ε‐Ahx‐Iaa) at the P2'‐P3' position. The proposed modifications of the selected human angiotensinogen fragment are intended to increase bioactivity, bioavailability, and stability of the inhibitor molecule in body fluids and tissues. The inhibitor Boc‐Phe(4‐OMe)‐MeLeu‐AHGHA‐OEt was obtained in the form of an ethyl ester. The hydrophobicity coefficient, expressed as log P varied between 3.95 and 8.17. In vitro renin inhibitory activity of all obtained compounds was contained within the range 10?6‐10?9 M. The compound Boc‐Phe(4‐OMe)‐MeLeu‐AHPPA‐Ahx‐Iaa proved to be the most active (IC50 = 1.05 × 10?9 M). The compounds Boc‐Phe(4‐OMe)‐MeLeu‐AHGHA‐Ahx‐Iaa and Boc‐Phe(4‐OMe)‐MeLeu‐AHPPA‐Ahx‐Iaa are resistant to chymotrypsin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
A new boswellic acid derivative, 11α‐ethoxy‐β‐boswellic acid (EBA; 1 ) and a new ursane‐type triterpene, named nizwanone ( 2 ), were isolated from Omani frankincense Boswellia sacra Flueck . together with two known compounds papyriogenin B and rigidenol. The structures of 1 and 2 were elucidated by detailed spectroscopic analysis using 1H‐ and 13C‐NMR, 1H,1H‐COSY, HMQC, HMBC, and HR‐EI‐MS techniques. The relative configurations of 1 and 2 were assigned by comparative analysis of the NMR spectral data with those of known analogs together with NOESY experiments. Structures of known compounds were identified by comparison with the reported data.  相似文献   

4.
A series of peptide dendrimers and their conjugates with antimicrobial agent FMDP (N3‐(4‐methoxyfumaroyl)‐(S)‐2,3‐diamino‐propanoic acid) were synthesized. The obtained compounds were tested for the antibacterial and antifungal activity. All novel dendrimers displayed much better activity against the tested strains than FMDP itself. Moreover, their conjugates with FMDP also exhibited antimicrobial activity. The most promising molecules were tested against a broad selection of fungal strains. The analysis of their antifungal properties indicates that the examined molecules are efficient growth inhibitors of fluconazole‐resistant hospital‐acquired strains. Moreover, an application of amphiphilic branched peptides such as FMDP carriers suggests that transport mechanism involves more likely the cell membrane perturbation than the mediation of the specific transport proteins. The activity of obtained compounds strongly depends on the specific structure of the molecule.  相似文献   

5.
Three (9βH)‐pimaranes, 1, 2 , and 3 , and two (9βH)‐17‐norpimaranes, 4 and 5 , belonging to a rare compound class in nature, were obtained from the tubers of Icacina trichantha for the first time. Compound 1 is a new natural product, and 2 – 5 have been previously reported. The structures were elucidated based on NMR and MS data, and optical rotation values. The absolute configurations of (9βH)‐pimaranes were unambiguously established based on X‐ray crystallographic analysis. Full NMR signal assignments for the known compounds 2, 4 , and 5 , which were not available in previous publications, are also reported. All five isolates displayed cytotoxic activities on MDA‐MB‐435 cells (IC50 0.66–6.44 μM ), while 2, 3 , and 4 also exhibited cytotoxicities on HT‐29 cells (IC50 3.00–4.94 μM ).  相似文献   

6.
Osteoporosis is caused by disturbance in the dynamic balance of bone remodelling, a physiological process, vital for maintenance of healthy bone tissue in adult humans. In this process, a new bone is formed by osteoblasts and the pre‐existing bone matrix is resorbed by osteoclasts. Imperatorin, a widely available and inexpensive plant extract with antioxidative and apoptotic effects, is reported to treat osteoporosis. However, the underlying mechanism and specific effects on bone metabolism have not been elucidated. In this study, we used rat bone marrow‐derived mesenchymal stem cells and found that imperatorin can activate RUNX2, COL1A1 and osteocalcin by promoting the Ser9 phosphorylation of GSK3β and entry of β‐catenin into the nucleus. Imperatorin also enhanced the production of phospho‐AKT (Ser473), an upstream factor that promotes the Ser9 phosphorylation of GSK3β. We used ipatasertib, a pan‐AKT inhibitor, to inhibit the osteogenic effect of imperatorin, and found that imperatorin promotes osteogenesis via AKT/GSK3β/β‐catenin pathway. Next, we used rat bone marrow‐derived monocytes, to check whether imperatorin inhibits osteoclast differentiation via AKT/GSK3β/β‐catenin pathway. Further, we removed the bilateral ovaries of rats to establish an osteoporotic model. Intragastric administration of imperatorin promoted osteogenesis and inhibited osteoclast in vivo. Our experiments showed that imperatorin is a potential drug for osteoporosis treatment.  相似文献   

7.
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2?/?) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2?/? mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2?/? mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2?/? mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (?Ψm) was reduced in ALDH2?/? mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2?/? mice following I/R stress.  相似文献   

8.
Previous reports indicated that integrins associated signals are tightly related to tumor progression. Here, we observed elevated expression of integrin α2β1 in tumor tissues from microtubule‐directed chemotherapeutic drugs (MDCDs) resistant patients compared with the samples from chemosensitive patients. More importantly, we sorted the integrin α2β1+ tumor cells and found those cells revealed high MDCDs resistance, whereas MDCDs shows effective cytotoxicity to those integrin α2β1? tumor cells in vitro and in vivo. Mechanistically, we demonstrated that integrin α2β1 could induce MDCDs resistance through the activation of the PI3K/AKT pathway. Applying MPEG‐PLA to co‐encapsulate the integrin α2β1 inhibitor E7820 and MDCDs could effectively reverse MDCDs resistance, resulting in enhanced anticancer effects while avoiding potential systemic toxicity in vitro and in vivo. In conclusion, the expression of integrin α2β1 contributes to MDCDs resistance, while applying E7820 combination treatment by MPEG‐PLA nanoparticles could reverse the resistance.  相似文献   

9.
Chronic rhinosinusitis without nasal polyps (CRSsNP) is one of the most common otorhinolaryngologic diseases worldwide. However, the underlying mechanism remains unclear. In this study, the expression of glycogen synthase kinase 3 (GSK‐3) was quantitatively evaluated in patients with CRSsNP (n = 20) and healthy controls (n = 20). The mRNA levels of GSK‐3α and GSK‐3β were examined by qPCR, the immunoreactivities of GSK‐3β and nuclear factor‐κB (NF‐κB) were examined by immunohistochemistry (IHC) staining, and the protein levels of GSK‐3β, phospho‐GSK‐3β (p‐GSK‐3β, s9) and NF‐κB were examined using Western blot analysis. We found that GSK‐3 was highly expressed in both CRSsNP and control groups without significant difference in both GSK‐3β mRNA and protein levels. However, when compared with healthy control group, the GSK‐3β activation index, defined as the ratio of GSK‐3β over p‐GSK‐3β, was significantly decreased, whereas the NF‐κB protein abundance was significantly increased in CRSsNP group (P < 0.05). Strikingly, the GSK‐3β activation index, was highly correlated with NF‐κB protein level, as well as CT scores in CRSsNP group (P < 0.05). It was also highly correlated with the mRNA expressions of inflammation‐related genes, including T‐bet, IFN‐γ and IL‐4 in CRSsNP group (P < 0.05). Our findings suggest that GSK‐3β activation index, reflecting the inhibitory levels of GSK‐3β through phosphorylation, may be a potential indicator for recurrent inflammation of CRSsNP, and that the insufficient inhibitory phosphorylation of GSK‐3β may play a pivotal role in the pathogenesis of CRSsNP.  相似文献   

10.
Glycogen synthase kinase‐3 beta (GSK‐3β) dysfunction may play an essential role in the pathogenesis of psychiatric, metabolic, neurodegenerative diseases, in which oxidative stress exists concurrently. Some studies have shown that GSK‐3β activity is up‐regulated under oxidative stress. This study evaluated how oxidative stress regulates GSK‐3β activity in human embryonic kidney 293 (HEK293)/Tau cells treated with hydrogen peroxide (H2O2). Here, we show that H2O2 induced an obvious increase of GSK‐3β activity. Surprisingly, H2O2 dramatically increased phosphorylation of GSK‐3β at Ser9, an inactive form of GSK‐3β,while there were no changes of phosphorylation of GSK‐3β at Tyr216. Moreover, H2O2 led to a transient [Ca2+]i elevation, and simultaneously increased the truncation of GSK‐3β into two fragments of 40 kDa and 30 kDa, whereas inhibition of calpain decreased the truncation and recovered the activity of GSK‐3β. Furthermore, tau was hyperphosphorylated at Ser396, Ser404, and Thr231, three most common GSK‐3β targeted sites after 100 μM H2O2 administration in HEK293/Tau cells, whereas inhibition of calpain blocked the tau phosphorylation. In addition, we found that there were no obvious changes of Cyclin‐dependent kinase 5 (CDK5) expression (responsible for tau phosphorylation) and of p35 cleavage, the regulatory subunit of CDK5 in H2O2‐treated HEK293/Tau cells. In conclusion, Ca2+‐dependent calpain activation leads to GSK‐3β truncation, which counteracts the inhibitory effect of Ser9 phosphorylation, up‐regulates GSK‐3β activity, and phosphorylates tau in H2O2‐treated HEK293/Tau cells.  相似文献   

11.
Abstract : Valproic acid (VPA) is a potent broad‐spectrum anti‐epileptic with demonstrated efficacy in the treatment of bipolar affective disorder. It has previously been demonstrated that both VPA and lithium increase activator protein‐1 (AP‐1) DNA binding activity, but the mechanisms underlying these effects have not been elucidated. However, it is known that phosphorylation of c‐jun by glycogen synthase kinase (GSK)‐3β inhibits AP‐1 DNA binding activity, and lithium has recently been demonstrated to inhibit GSK‐3β. These results suggest that lithium may increase AP‐1 DNA binding activity by inhibiting GSK‐3β. In the present study, we sought to determine if VPA, like lithium, regulates GSK‐3. We have found that VPA concentration‐dependently inhibits both GSK‐3α and ‐3β, with significant effects observed at concentrations of VPA similar to those attained clinically. Incubation of intact human neuroblastoma SH‐SY5Y cells with VPA results in an increase in the subsequent in vitro recombinant GSK‐3β‐mediated 32P incorporation into two putative GSK‐3 substrates (~85 and 200 kDa), compatible with inhibition of endogenous GSK‐3β by VPA. Consistent with GSK‐3β inhibition, incubation of SH‐SY5Y cells with VPA results in a significant time‐dependent increase in both cytosolic and nuclear β‐catenin levels. GSK‐3β plays a critical role in the CNS by regulating various cytoskeletal processes as well as long‐term nuclear events and is a common target for both lithium and VPA ; inhibition of GSK‐3β in the CNS may thus underlie some of the long‐term therapeutic effects of mood‐stabilizing agents.  相似文献   

12.
In order to find novel antitumor candidate agents with high efficiency and low toxicity, 14 novel substituted 5‐anilino‐α‐glucofuranose derivatives have been designed, synthesized and evaluated for antiproliferative activities in vitro. Their structures were characterized by NMR (1H and 13C) and HR‐MS, and configuration (R/S) at C(5) was identified by two‐dimensional 1H,1H‐NOESY‐NMR spectrum. Their antiproliferative activities against human tumor cells were investigated by MTT assay. The results demonstrated that most of the synthesized compounds had antiproliferative effects comparable to the reference drugs gefitinib and lapatinib. In particular, (5R)‐5‐O‐(3‐chloro‐4‐{[5‐(4‐fluorophenyl)thiophen‐2‐yl]methyl}anilino)‐5‐deoxy‐1,2‐O‐(1‐methylethylidene)‐α‐glucofuranose ( 9da ) showed the most potent antiproliferative effects against SW480, A431 and A549 cells, with IC50 values of 8.57, 5.15 and 15.24 μm , respectively. This work suggested 5‐anilino‐α‐glucofuranose as an antitumor core structure that may open a new way to develop more potent anti‐cancer agents.  相似文献   

13.
Glycogen synthase kinase 3β (GSK3β) is a ubiquitous serine/threonine kinase that plays a pivotal role in many biological processes. GSK3β catalyzes the transfer of γ‐phosphate of ATP to the unique substrate Ser/Thr residues with the assistance of two natural activating cofactors Mg2+. Interestingly, the biological observation reveals that a non‐native Ca2+ ion can inhibit the GSK3β catalytic activity. Here, the inhibitory mechanism of GSK3β by the displacement of native Mg2+ at site 1 by Ca2+ was investigated by means of 80 ns comparative molecular dynamics (MD) simulations of the GSK3β···Mg2+‐2/ATP/ Mg2+‐1 and GSK3β···Mg2+‐2/ATP/Ca2+‐1 systems. MD simulation results revealed that using the AMBER point charge model force field for Mg2+ was more appropriate in the reproduction of the active site architectural characteristics of GSK3β than using the magnesium‐cationic dummy atom model force field. Compared with the native Mg2+ bound system, the misalignment of the critical triphosphate moiety of ATP, the erroneous coordination environments around the Mg2+ ion at site 2, and the rupture of the key hydrogen bond between the invariant Lys85 and the ATP Oβ2 atom in the Ca2+ substituted system were observed in the MD simulation due to the Ca2+ ion in active site in order to achieve its preferred sevenfold coordination geometry, which adequately abolish the enzymatic activity. The obtained results are valuable in understanding the possible mechanism by why Ca2+ inhibits the GSK3β activity and also provide insights into the mechanism of Ca2+ inhibition in other structurally related protein kinases. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
We previously found that miR‐29a was significantly downregulated in Ankylosing spondylitis (AS) patients, a chronic inflammatory disease associated with bone metabolic disorder, however, the underlying mechanism remains unclear. In this study, we demonstrated that miR‐29a regulates tumor necrosis factor‐α (TNF‐α) mediated bone loss mainly by targeting DKK1 and GSK3β, thus activating the Wnt/β‐catenin pathway. Our findings may provide new insight into the pathogenesis of the bone metabolism disorder in inflammation environment and provide promising therapeutic target.  相似文献   

15.
Mutational activation of RAC1 is detected in ~7% of cutaneous melanoma, with the most frequent mutation (RAC1C85T) encoding for RAC1P29S. RAC1P29S is a fast‐cycling GTPase that leads to accumulation of RAC1P29S‐GTP, which has potentially pleiotropic regulatory functions in melanoma cell signaling and biology. However, the precise mechanism by which mutationally activated RAC1P29S propagates its pro‐tumorigenic effects remains unclear. RAC1‐GTP is reported to activate the beta isoform of PI3’‐kinase (PIK3CB/PI3Kβ) leading to downstream activation of PI3’‐lipid signaling. Hence, we employed both genetic and isoform‐selective pharmacological inhibitors to test if RAC1P29S propagates its oncogenic signaling in melanoma through PI3Kβ. We observed that RAC1P29S‐expressing melanoma cells were largely insensitive to inhibitors of PI3Kβ. Furthermore, RAC1P29S melanoma cell lines showed variable sensitivity to pan‐class 1 (α/β/γ/δ) PI3’‐kinase inhibitors, suggesting that RAC1‐mutated melanoma cells may not rely on PI3’‐lipid signaling for their proliferation. Lastly, we observed that RAC1P29S‐expressing cell lines also showed variable sensitivity to pharmacological inhibition of the RAC1 → PAK1 signaling pathway, questioning the relevance of inhibitors of this pathway for the treatment of patients with RAC1‐mutated melanoma.  相似文献   

16.
17.
β3‐Octaarginine chains were attached to the functional groups NH and CO2H of the antibacterial fluoroquinolones ciprofloxacin (→ 1 ) and enrofloxacin (→ 2 ), respectively, in order to find out whether the activity increases by attachment of the polycationic, cell‐penetrating peptide (CPP) moiety. For comparison, simple amides, 3 – 5 , of the two antimicrobial compounds and β3‐octaarginine amide ( βR8 ) were included in the antibacterial susceptibility tests to clarify the impact of chemical modification on the microbiological activity of either scaffold (Table).  相似文献   

18.
In this study, proteinogenic amino acids residues of dimeric dermorphin pentapeptides were replaced by the corresponding β3homo‐amino acids. The potency and selectivity of hybrid α/β dimeric dermorphin pentapeptides were evaluated by competetive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). Tha analog containing β3homo‐Tyr in place of Tyr (Tyr‐d ‐Ala‐Phe‐Gly‐β3homo‐Tyr‐NH‐)2 showed good μ receptor affinity and selectivity (IC50 = 0.302, IC50 ratio μ/δ = 68) and enzymatic stability in human plasma. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
We have recently reported a series of synthetic anticancer heptapeptides (H‐KKWβ2,2WKK‐NH2) containing a central achiral and lipophilic β2,2‐amino acid that display low toxicity against non‐malignant cells and high proteolytic stability. In the present study, we have further investigated the effects of increasing the rigidity and amphipathicity of two of our lead heptapeptides by preparing a series of seven to five residue cyclic peptides containing the two most promising β2,2‐amino acid derivatives as part of the central lipophilic core. The peptides were tested for anticancer activity against human Burkitt's lymphoma (Ramos cells), haemolytic activity against human red blood cells (RBC) and cytotoxicity against healthy human lung fibroblast cells (MRC‐5). The results demonstrated a considerable increase in anticancer potency following head‐to‐tail peptide cyclization, especially for the shortest derivatives lacking a tryptophan residue. High‐resolution NMR studies and molecular dynamics simulations together with an annexin‐V‐FITC and propidium iodide fluorescent assay showed that the peptides had a membrane disruptive mode of action and that the more potent peptides penetrated deeper into the lipid bilayer. The need for new anticancer drugs with novel modes of action is demanding, and development of short cyclic anticancer peptides with an overall rigidified and amphipathic structure is a promising approach to new anticancer agents. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号