首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double-stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent inter-molecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a two-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor.  相似文献   

3.
Retroviral RNA packaging.   总被引:3,自引:0,他引:3  
  相似文献   

4.
The results of studies of Adenovirus have contributed to our basic understanding of the molecular biology of the cell. While a great body of knowledge has been developed concerning Ad gene expression, viral replication, and effects on the infected host, the molecular details of the assembly process of Adenovirus particles are largely unknown. In this article, we would like to propose a theoretical model for the packaging and assembly of Adenovirus and present an overview of the studies that have contributed to our present understanding. In particular, we will summarize the molecular details of the process for packaging of viral DNA into virus particles and highlight the events in packaging and assembly that require further study.  相似文献   

5.
Crossley M 《Genome biology》2002,3(5):reports4014.1-reports40143
A report on the 23rd Annual Lorne Conference on the Organization and Expression of the Genome, Lorne, Victoria, Australia, 17-21 February 2002.  相似文献   

6.
7.
First-generation AdV enables efficient gene transduction, although its immunogenicity is an important problem in vivo. Helper-dependent AdV (HD-AdV) is one possible solution to this problem. The construction of HD-AdV requires a helper virus, in which the viral packaging domain is flanked by two inserted loxP to hamper its packaging in Cre-expressing 293 cells. Here, we constructed 19L viruses containing loxP at 191 nt from the left end of the genome upstream of the packaging domain, 15L viruses bearing loxP at 143 nt, and a control ΔL virus lacking loxP at these positions. The 19L position is used worldwide, and the 15L position has been reported to result in a lower titer than that of 19L. When the titers were compared for six pairs of 19L and 15L AdV, the 19L AdV produced titers similar to, or sometimes lower than, the 15L and ΔL AdV, unlike the results of previous reports. We next chose one pair of 15L and 19L AdV that produced titers similar to that of ΔL and a competitor AdV lacking loxP for use in a competition assay. When a small amount of the competitor AdV was co-infected, both the 15L and the 19L AdV, but not ΔL, gradually became minority components during subsequent viral passages. Therefore, the loxP insertions at 143 nt and 191 nt decreased the viral packaging efficiency.  相似文献   

8.
We review recent literature describing protein nucleic acid interactions and nucleic acid organization in viruses. The nature of the viral genome determines its overall organization and its interactions with the capsid protein. Genomes composed of single strand (ss) RNA and DNA are highly flexible and, in some cases, adapt to the symmetry of the particle-forming protein to show repeated, sequence independent, nucleoprotein interactions. Genomes composed of double-stranded (ds) DNA do not interact strongly with the container due to their intrinsic stiffness, but form well-organized layers in virions. Assembly of virions with ssDNA and ssRNA genomes usually occurs through a cooperative condensation of the protein and genome, while dsDNA viruses usually pump the genome into a preformed capsid with a strong, virally encoded, molecular motor complex. We present data that suggest the packing density of ss genomes and ds genomes are comparable, but the latter exhibit far higher pressures due to their stiffness.  相似文献   

9.
10.
Cosmid DNA packaging in vivo   总被引:16,自引:0,他引:16  
M Feiss  D A Siegele  C F Rudolph  S Frackman 《Gene》1982,17(2):123-130
The packaging of cosmid DNA into phage particles during phage lambda growth is described. Evidence is presented supporting the work of others that cosmid transducing phages contain linear multimers of cosmid DNA in which the number of cosmid copies is that required to make a packagable DNA length (greater than 0.77 of the lambda DNA length). The yield of cosmid transducing phages declines sharply as the number of cosmid copies required to make a packagable DNA length increases. The cosmid DNA replication that produces the packaging substrate shares with lambda rolling-circle replication a dependence on the lambda gam gene product.  相似文献   

11.
A novel and versatile DNA packaging approach was developed by grafting DNA-binding oligopeptides onto a polymer scaffold to combinatively self-assemble with DNA into compact nanostructures.  相似文献   

12.
Alphaviruses are a group of small, enveloped viruses which are widely distributed on all continents. In infected cells, alphaviruses display remarkable specificity in RNA packaging by encapsidating only their genomic RNA while avoiding packaging of the more abundant viral subgenomic (SG), cellular messenger and transfer RNAs into released virions. In this work, we demonstrate that in spite of evolution in geographically isolated areas and accumulation of considerable diversity in the nonstructural and structural genes, many alphaviruses belonging to different serocomplexes harbor RNA packaging signals (PSs) which contain the same structural and functional elements. Their characteristic features are as follows. (i) Sindbis, eastern, western, and Venezuelan equine encephalitis and most likely many other alphaviruses, except those belonging to the Semliki Forest virus (SFV) clade, have PSs which can be recognized by the capsid proteins of heterologous alphaviruses. (ii) The PS consists of 4 to 6 stem-loop RNA structures bearing conserved GGG sequences located at the base of the loop. These short motifs are integral elements of the PS and can function even in the artificially designed PS. (iii) Mutagenesis of the entire PS or simply the GGG sequences has strong negative effects on viral genome packaging and leads to release of viral particles containing mostly SG RNAs. (iv) Packaging of RNA appears to be determined to some extent by the number of GGG-containing stem-loops, and more than one stem-loop is required for efficient RNA encapsidation. (v) Viruses of the SFV clade are the exception to the general rule. They contain PSs in the nsP2 gene, but their capsid protein retains the ability to use the nsP1-specific PS of other alphaviruses. These new discoveries regarding alphavirus PS structure and function provide an opportunity for the development of virus variants, which are irreversibly attenuated in terms of production of infectious virus but release high levels of genome-free virions.  相似文献   

13.
14.
Chromosome condensation: packaging the genome   总被引:3,自引:0,他引:3  
Uhlmann F 《Current biology : CB》2001,11(10):R384-R387
The packaging of centimetre long DNA molecules into compact metaphase chromosomes is essential for genome segregation in anaphase. The chromosomal condensin complex plays a crucial part in this packaging, and important new insight into condensin action in vitro and in vivo has recently been gained.  相似文献   

15.
16.
17.
Specificity of retroviral RNA packaging.   总被引:28,自引:25,他引:3  
  相似文献   

18.
A型流行性感冒病毒的负链RNA基因组由编码病毒中12个蛋白质的八个节段组成。在病毒组装的最后阶段,病毒体从细胞顶端胞浆膜突出时将这些基因组的病毒体(v)RNAs吸收进其中。基因组分段赋予了流感病毒进化的优势,但也提出了问题,在病毒体组装时需要八个节段每一个的至少一个复制本以产生完全有传染性的病毒颗粒。历史上一直存在争论:一方赞同确保足额的基因组合并的特异性包装机制;另一方赞同基因组节段被随机选择而不是以充足数量被包装以确保能自行产生合理比例病毒体的替代模式。近年来人们对该问题已达成一致意见:大多数病毒体仅包含八个节段,特异性机制为选择每个vRNA的某一复制本的确发挥了作用。本综述总结了得出这一结论所做的工作,叙述了在识别特异性包装信号方面最新的进展,讨论了这些RNA元素运转的可能机制。  相似文献   

19.
Organized packaging of kinetoplast DNA networks   总被引:5,自引:0,他引:5  
L E Silver  A F Torri  S L Hajduk 《Cell》1986,47(4):537-543
The kinetoplast DNA (kDNA) of Trypanosoma equiperdum is organized as a complex structure of catenated circular DNA molecules. The major component of the kDNA network is the one kilobase minicircle that is present at about 10,000 copies per network. We have developed two assays to examine the structure of kDNA networks compacted in vitro with spermidine. Our results suggest that minicircles are arranged into a regular structure with an exposed domain which is DNAase I- and restriction-sensitive and a protected domain which is resistant to restriction endonucleases and DNAase I. This regularly packaged structure is dependent upon spermidine compaction and the circularity of the kDNA, but does not require supercoiled minicircles or catenated networks.  相似文献   

20.
An ATP-dependent motor drives a DNA genome into a bacteriophage capsid during morphogenesis of double-stranded DNA bacteriophages both in vivo and in vitro. The DNA molecule enters the capsid through a channel in the center of a symmetric protein ring called a connector. Mechanisms in two classes have been proposed for this motor: (1) An ATP-driven rotating connector pulls a DNA molecule via serial power strokes. (2) The connector rectifies DNA motion that is either thermal, biased thermal, or oscillating electrical field-induced (motor-ratchet hypothesis). Mechanisms in the first class have previously been proposed to explain the detailed structure of DNA packaging motors. The present study demonstrates that the motor-ratchet hypothesis also explains the current data, including data in the following categories: biochemical genetics, energetics, structure, and packaging dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号