首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.

Background

Tbx5 deficiency in zebrafish causes several abnormal phenotypes of the heart and pectoral fins. It has been reported that exogenous human growth hormone can enhance expression of downstream mediators in the growth hormone and insulin-like growth factor I (IGF-I) pathway and partially restore dysmorphogenesis in tbx5 morphants. This study aimed to further evaluate the effects of IGF-I on cell apoptosis and dysmorphogenesis in zebrafish embryos deficient for tbx5.

Results

Among the five studied groups of zebrafish embryos (wild-type embryos [WT], tbx5 morphants [MO], mismatched tbx5 morpholino-treated wild-type embryos [MIS], IGF-I-treated wild-type embryos [WTIGF1], and IGF-I-treated tbx5 morphants [MOIGF1]), the expression levels of the ifg1, igf1-ra, ifg-rb, erk1, and akt2 genes as well as the ERK and AKT proteins were significantly reduced in the MO group, but were partially restored in the MOIGF1 group. These expression levels remained normal in the WT, MIS, and WTIGF1 groups. Exogenous human IGF-I also reduced the incidence of phenotypic anomalies, decreased the expression levels of apoptotic genes and proteins, suppressed cell apoptosis, and improved survival of the MOIGF1 group.

Conclusions

These results suggest that IGF-I has an anti-apoptotic protective effect in zebrafish embryos with tbx5 deficiency.
  相似文献   

2.

Background

HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1) regulates a wide variety of cellular processes. It has been shown that one of the targets of HACE1 is the GTP-bound form of the small GTPase Rac1. However, the role of HACE1 in early development remains unknown.

Results

In situ hybridization revealed that Xenopus laevis hace1 is specifically expressed in the ectoderm at the blastula and gastrula stages and in the epidermis, branchial arch, kidney, and central nervous system at the tailbud stage. Knockdown of hace1 in Xenopus laevis embryos via antisense morpholino oligonucleotides led to defects in body axis elongation, pigment formation, and eye formation at the tadpole stage. Experiments with Keller sandwich explants showed that hace1 knockdown inhibited convergent extension, a morphogenetic movement known to be crucial for body axis elongation. In addition, time lapse imaging of whole embryos during the neurula stage indicated that hace1 knockdown also delayed neural tube closure. The defects caused by hace1 knockdown were partly rescued by knockdown of rac1. Moreover, embryos expressing a constitutively active form of Rac1 displayed phenotypes similar to those of embryos with hace1 knocked down.

Conclusions

Our results suggest that Xenopus laevis hace1 plays an important role in early embryonic development, possibly via regulation of Rac1 activity.
  相似文献   

3.

Introduction

Cellulose microfibril is a major cell wall polymer that plays an important role in the growth and development of plants. The gene cellulose synthase A (CesA), encoding cellulose synthases, is involved in the synthesis of cellulose microfibrils. However, the regulatory mechanism of CesA gene expression is not well understood, especially during the early developmental stages.

Objective

To identify factor(s) that regulate the expression of CesA genes and ultimately control seedling growth and development.

Methods

The presence of cis-elements in the promoter region of the eight CesA genes identified in flax (Linum usitatissimum L. ‘Nike’) seedlings was verified, and three kinds of ethylene-responsive cis-elements were identified in the promoters. Therefore, the effect of ethylene on the expression of four selected CesA genes classified into Clades 1 and 6 after treatment with 10?4 and 10?3 M 1-aminocyclopropane-1-carboxylic acid (ACC) was examined in the hypocotyl of 4–6-day-old flax seedlings.

Results

ACC-induced ethylene either up- or down-regulated the expression of the CesA genes depending on the clade to which these genes belonged, age of seedlings, part of the hypocotyl, and concentration of ACC.

Conclusion

Ethylene might be one of the factors regulating the expression of CesA genes in flax seedlings.
  相似文献   

4.

Background

Gonadotropin releasing hormone (GnRH) is responsible for stimulation of gonadotropic hormone (GtH) in the hypothalamus-pituitary-gonadal axis (HPG). The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio).

Results

We have characterized a zebrafish [Trp7, Leu8] or salmon (s) GnRH variant, gnrh 3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH), was shown capable of driving cell specific reporter gene expression in transgenic zebrafish.

Conclusions

The characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar) GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.
  相似文献   

5.

Background

Previously we have reported on the development of a new mouse anti-titin monoclonal antibody, named MAb Titl 5 H1.1, using the synthetic peptide N-AVNKYGIGEPLESDSVVAK-C which corresponds to an amino acid sequence in the A-region of the titin molecule as immunogen. In the human skeletal muscles, MAb Titl 5 H1.1 reacts specifically with titin in the A-band of the sarcomere and in different non-muscle cell types with nucleus and cytoplasm, including centrioles. In this report we have studied the evolutionary aspects of the binding of MAb Tit1 5 H1.1 with its target antigen (titin).

Results

We have specified the epitope area of MAb Tit1 5 H1.1 by subpeptide mapping to the hexapeptide N-AVNKYG-C. According to protein databases this amino acid sequence is located in the COOH-terminus of several different Fn3 domains of the A-region of titin molecule in many organisms, such as human being, mouse, rabbit, zebrafish (Danio rerio), and even in sea squirt (Ciona intestinalis). Our immunohisto- and cytochemical studies with MAb Tit1 5 H1.1 in human, mouse and zebrafish tissues and cell cultures showed a striated staining pattern in muscle cells and also staining of centrioles, cytoplasm and nuclei in non-muscle cells.

Conclusions

The data confirm that titin can play, in addition to the known roles in striated muscle cells also an important role in non-muscle cells as a centriole associated protein. This phenomenon is highly conserved in the evolution and is related to Fn3 domains of the titin molecule. Using titin A-band-specific monoclonal antibody MAb Tit1 5 H1.1 it was possible to locate titin in the sarcomeres of skeletal muscle cells and in the centrioles, cytoplasm and nuclei of non-muscle cells in phylogenetically so distant organisms as Homo sapiens, Mus musculus and zebrafish (Danio rerio).
  相似文献   

6.

Background

Diabetes mellitus is a group of metabolic diseases with increased blood glucose concentration as the main symptom. This can be caused by a relative or a total lack of insulin which is produced by the β‐cells in the pancreatic islets of Langerhans. Recent experimental results indicate the relevance of the β‐cell cycle for the development of diabetes mellitus.

Methods

This paper introduces a mathematical model that connects the dynamics of glucose and insulin concentration with the β‐cell cycle. The interplay of glucose, insulin, and β‐cell cycle is described with a system of ordinary differential equations. The model and its development will be presented as well as its mathematical analysis. The latter investigates the steady states of the model and their stability.

Results

Our model shows the connection of glucose and insulin concentrations to the β‐cell cycle. In this way the important role of glucose as regulator of the cell cycle and the capability of the β‐cell mass to adapt to metabolic demands can be presented. Simulations of the model correspond to the qualitative behavior of the glucose‐insulin regulatory system showed in biological experiments.

Conclusions

This work focusses on modeling the physiological situation of the glucose‐insulin regulatory system with a detailed consideration of the β‐cell cycle. Furthermore, the presented model allows the simulation of pathological scenarios. Modification of different parameters results in simulation of either type 1 or type 2 diabetes.
  相似文献   

7.

Background

Polycomb repressive complex 2 (PRC2)-catalyzed H3K27me3 marks are tightly associated with the WUS-AG negative feedback loop to terminate floral stem cell fate to promote carpel development, but the roles of Polycomb repressive complex 1 (PRC1) in this event remain largely uncharacterized.

Results

Here we show conspicuous variability in the morphology and number of carpels among individual flowers in the absence of the PRC1 core components AtRING1a and AtRING1b, which contrasts with the wild-type floral meristem consumed by uniform carpel production in Arabidopsis thaliana. Promoter-driven GUS reporter analysis showed that AtRING1a and AtRING1b display a largely similar expression pattern, except in the case of the exclusively maternal-preferred expression of AtRING1b, but not AtRING1a, in the endosperm. Indeterminate carpel development in the atring1a;atring1b double mutant is due to replum/ovule-to-carpel conversion in association with ectopic expression of class I KNOX (KNOX-I) genes. Moreover, AtRING1a and AtRING1b also play a critical role in ovule development, mainly through promoting the degeneration of non-functional megaspores and proper integument formation. Genetic interaction analysis indicates that the AtRING1a/b-regulated KNOX-I pathway acts largely in a complementary manner with the WUS-AG pathway in controlling floral stem cell maintenance and proper carpel development.

Conclusions

Our study uncovers a novel mechanistic pathway through which AtRING1a and AtRING1b repress KNOX-I expression to terminate floral stem cell activities and establish carpel cell fate identities.
  相似文献   

8.
9.
10.
11.

Objectives

A Neissaria bacterial pilus sugar, bacillosamine, was synthesized and, for the first time, used as a probe to screen a single-chain variable fragment (scFv).

Results

Four Neisseria, Neisseria gonorrhoeae, Neisseria meningitidis, Neisseria sicca and Neisseria subflava, and two negative controls, Streptococcus pneumoniae and Escherichia coli, were tested through ELISA, immunostaining and gold nanoparticle immunological assay. All results indicated that the selected scFv is feasible for the specific detection of Neisseria species via the recognition of bacillosamine.

Conclusions

The recombinant scFv could detect Neisseria strains at 106 CFU/ml.
  相似文献   

12.

Aims

This study investigated how genetic determination of adventitious root development compared in experimental hybrid and parental Salix and Populus clones, and how soil bulk density influenced root development.

Methods

Cuttings of 11 Salix clones and 10 Populus clones were grown in pots with water, a low bulk density soil and a high bulk density soil for 4 (water) or 10 weeks (soils). Parameters relating to root development were measured.

Results

Root initiation, total root length (RL), and dry mass (DM), as well as root: shoot relationships in Salix clones exceeded that of Populus clones in all media. For Salix clones RL and DM were highest in S. matsudana?×?pentandra and for Populus clones RL and DM were generally higher in hybrid clones having P. trichocarpa parentage. Mean RL and DM for all clones were generally greater in the low bulk density soil than in the high bulk density soil. There were a greater proportion of thinner roots in the low bulk density soil than in the high bulk density soil.

Conclusions

There were significant differences in root initiation, RL, and DM among clones within each genus. Increasing soil bulk density significantly reduced root development in both Salix and Populus clones. Evaluating cutting root development in pot trials could be a useful clone selection tool in willow and poplar breeding.
  相似文献   

13.

Background

Recent studies showed that long non-coding RNA (lncRNA) plays an important role in many life activities. RPPH1 is one of the lncRNA genes that are expressed differently between breast cancer and normal tissues by the lncRNA gene chip. Our study was conducted to examine the regulation of lncRNA RPPH1 in breast cancer.

Methods

Two cell lines, MCF-7 and MDA-MB-231, were selected to be the research objects in this study; RPPH1 overexpression and knockdown models were established by transforming vectors. Real-time polymerase chain reaction, MTT assay, clone formation and cell flow cytometer assay were used to test the function of RPPH1. Dual-luciferase assay was used to detect a target relationship between RPPH1 and miR-122.

Results

RPPH1 overexpression promoted cell cycle and proliferation and increased colony formation. In the RPPH1 overexpression model, there was a target relationship between RPPH1 and miR-122, and some of the downstream genes of miR-122, including ADAM10, PKM2, NOD2 and IGF1R, were increased. Moreover, we found that lentivirus-mediated interference of lncRNA RPPH1 inhibited tumour growth in nude mice.

Conclusion

Breast cancer progression can be promoted by directly targeting miR-122 through lncRNA RPPH1. This study provided evidence that can serve as the molecular basis for improving treatment options for patients.
  相似文献   

14.
15.

Objectives

To develop a versatile Trichoderma reesei (teleomorph Hypocrea jecorina) expression system for the high-purity production of heterologous proteins.

Results

The versatile T. reesei expression system is based on xyn1 and xyn2 promoters, A824V transition in XYRI, and a bicomponent carbon source strategy. Red fluorescent protein gene rfp and alkaline endoglucanase EGV gene egv3 from Humicola insolens were used as reporter genes to test our versatile expression system

Conclusions

The versatile T. reesei expression system can be applied to produce heterologous proteins with high purity and high yield.
  相似文献   

16.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

17.
Bier  Peter V.  Persche  Malachi  Koch  Paul  Soldat  Douglas J. 《Plant and Soil》2018,432(1-2):303-314

Aims

Buckwheat (Fagopyrum esculentum) is highly tolerant to Al stress, but the molecular mechanisms remain largely unknown. This study aims to investigate a half-type ABC transporter gene (FeSTAR1) with respect to Al tolerance.

Methods

The expression of FeSTAR1 was examined and complementation test in atstar1 mutant was conducted. Furthermore, Al distribution and cell wall polysaccharides content were analyzed.

Results

FeSTAR1 is an ABC transporter protein with nucleotide binding domain, but lack of transmembrane domain. Consistently, FeSTAR1 is a soluble protein, localizing to both cytoplasm and nucleus. Al rapidly and specifically induced FeSTAR1 expression. Heterologous expression of FeSTAR1 in atstar1 rescued its Al tolerance, and exogenous applied UDP-glucose could alleviate Al sensitivity of atstar1 mutant, suggesting the connection between FeSTAR1 and UDP-glucose in terms of Al tolerance. Furthermore, FeSTAR1 complemented lines accumulated less Al in root cell wall than atstar1 mutant. Further cell wall fraction analysis showed that Al was largely confined to cell wall hemicellulose1, at which Al content was significantly lower in complemented lines. Consistent with Al distribution in different cell wall polysaccharides, complemented lines had lower hemicellulose1 content.

Conclusion

Our results indicate that FeSTAR1 is involved in Al resistance via possibly cell wall matrix polysaccharides metabolism in buckwheat.
  相似文献   

18.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

19.

Background

Streptococcus pyogenes is an uncommon pathogen of purpura fulminans, and the pathogenesis of S. pyogenes-purpura fulminans remains unclear because of paucity of cases. We reported a pediatric case of S. pyogenes-purpura fulminans with literature review of the disease.

Case presentation

A 3-year-old boy showed limping, lethargy and acral gangrene within 24 h. A diagnosis of S. pyogenes-purpura fulminans was made for bacterial isolation from throat and peripheral blood. Intensive therapy led to a survival with amputation of the left distal metatarsal bone, and normal development. The isolated M12 carried no mutation of csrS/R or rgg. Thrombophilia or immunodeficiency was excluded.

Discussion

Twelve-reported cases (9 pediatric and 3 elderly) of S. pyogenes-purpura fulminans started with shock and coagulopathy. Five patients age <?8 years had no underlying disease and survived. One youngest and two immunocompromised patients died.

Conclusion

Streptococcus pyogenes-acute infectious purpura fulminans is a distinctive rare form of aggressive GAS infections.
  相似文献   

20.

Objective

Palladised cells of Desulfovibrio desulfuricans and Shewanella oneidensis have been reported as fuel cell electrocatalysts but growth at scale may be unattractive/costly; we have evaluated the potential of using E. coli, using H2/formate for Pd-nanoparticle manufacture.

Results

Using ‘bio-Pd’ made under H2 (20 wt%) cyclic voltammograms suggested electrochemical activity of bio-NPs in a native state, attributed to proton adsorption/desorption. Bio-Pd prepared using formate as the electron donor gave smaller, well separated NPs; this material showed no electrochemical properties, and hence little potential for fuel cell use using a simple preparation technique. Bio-Pd on S. oneidensis gave similar results to those obtained using E. coli.

Conclusion

Bio-Pd is sufficiently conductive to make an E. coli-derived electrochemically active material on intact, unprocessed bacterial cells if prepared at the expense of H2, showing potential for fuel cell applications using a simple one-step preparation method.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号