首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Impaired cellular homeostasis of metals, particularly of Cu, Fe and Mn may trigger neurodegeneration through various mechanisms, notably induction of oxidative stress, promotion of α-synuclein aggregation and fibril formation, activation of microglial cells leading to inflammation and impaired production of metalloproteins. In this article we review available studies concerning Fe, Cu and Mn in Parkinson's disease and Wilson's disease. In Parkinson's disease local dysregulation of iron metabolism in the substantia nigra (SN) seems to be related to neurodegeneration with an increase in SN iron concentration, accompanied by decreased SN Cu and ceruloplasmin concentrations and increased free Cu concentrations and decreased ferroxidase activity in the cerebrospinal fluid. Available data in Wilson's disease suggest that substantial increases in CNS Cu concentrations persist for a long time during chelating treatment and that local accumulation of Fe in certain brain nuclei may occur during the course of the disease. Consequences for chelating treatment strategies are discussed.  相似文献   

2.
Parkinson's disease (PD) is a common neurodegenerative disorder marked by movement impairment caused by a selective degeneration of dopaminergic neurons. The mechanism for dopaminergic neuronal degeneration in PD is not completely clear, but it is believed that oxidative and nitrosative stress plays an important role during the pathogenesis of PD. This notion is supported by various studies that several indices of oxidative and nitrosative stress are increased in PD patients. In recent years, different pathways that are known to be important for neuronal survival have been shown to be affected by oxidative and nitrosative stress. Apart from the well-known oxidative free radicals induced protein nitration, lipid peroxidation and DNA damage, increasing evidence also suggests that some neuroprotective pathways can be affected by nitric oxide through S-nitrosylation. In addition, the selective dopaminergic neurodegeneration suggests that generation of oxidative stress associated with the metabolism of dopamine is an important contributor. Thorough understanding of how oxidative stress can contribute to the pathogenesis of PD will help formulate potential therapy for the treatment of this neurodegenerative disorder in the future.  相似文献   

3.
Parkinson's disease is a progressive neurodegenerative disease in the elderly, and no cure or disease-modifying therapies exist. Several lines of evidence suggest that mitochondrial dysfunction and oxidative stress have a central role in the dopaminergic neurodegeneration of Parkinson's disease. In this context, mitochondria-targeted therapies that improve mitochondrial function may have great promise in the prevention and treatment of Parkinson's disease. In this review, we discuss the recent developments in mitochondria-targeted antioxidants and their potential beneficial effects as a therapy for ameliorating mitochondrial dysfunction in Parkinson's disease. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

4.
《Journal of Proteomics》2010,73(1):10-29
During the last decades, considerable advances in the understanding of specific mechanisms underlying neurodegeneration in Parkinson's disease have been achieved, yet neither definite etiology nor unifying sequence of molecular events has been formally established. Current unmet needs in Parkinson's disease research include exploring new hypotheses regarding disease susceptibility, occurrence and progression, identifying reliable diagnostic, prognostic and therapeutic biomarkers, and translating basic research into appropriate disease-modifying strategies. The most popular view proposes that Parkinson's disease results from the complex interplay between genetic and environmental factors and mechanisms believed to be at work include oxidative stress, mitochondrial dysfunction, excitotoxicity, iron deposition and inflammation. More recently, a plethora of data has accumulated pinpointing an abnormal processing of the neuronal protein α-synuclein as a pivotal mechanism leading to aggregation, inclusions formation and degeneration. This protein-oriented scenario logically opens the door to the application of proteomic strategies to this field of research. We here review the current literature on proteomics applied to Parkinson's disease research, with particular emphasis on pathogenesis of sporadic Parkinson's disease in humans. We propose the view that Parkinson's disease may be an acquired or genetically-determined brain proteinopathy involving an abnormal processing of several, rather than individual neuronal proteins, and discuss some pre-analytical and analytical developments in proteomics that may help in verifying this concept.  相似文献   

5.
Parkinson's disease prevalence is rapidly increasing in an aging global population. With this increase comes exponentially rising social and economic costs, emphasizing the immediate need for effective disease‐modifying treatments. Motor dysfunction results from the loss of dopaminergic neurons in the substantia nigra pars compacta and depletion of dopamine in the nigrostriatal pathway. While a specific biochemical mechanism remains elusive, oxidative stress plays an undeniable role in a complex and progressive neurodegenerative cascade. This review will explore the molecular factors that contribute to the high steady‐state of oxidative stress in the healthy substantia nigra during aging, and how this chemical environment renders neurons susceptible to oxidative damage in Parkinson's disease. Contributing factors to oxidative stress during aging and as a pathogenic mechanism for Parkinson's disease will be discussed within the context of how and why therapeutic approaches targeting cellular redox activity in this disorder have, to date, yielded little therapeutic benefit. We present a contemporary perspective on the central biochemical contribution of redox imbalance to Parkinson's disease etiology and argue that improving our ability to accurately measure oxidative stress, dopaminergic neurotransmission and cell death pathways in vivo is crucial for both the development of new therapies and the identification of novel disease biomarkers.  相似文献   

6.
There are over 7 million people worldwide suffering from Parkinson's disease, and this number will double in the next decade. Causative mutations and risk variants in >20 genes that predominantly act at synapses have been linked to Parkinson's disease. Synaptic defects precede neuronal death. However, we are only now beginning to understand which molecular mechanisms contribute to this synaptic dysfunction. In this review, we discuss recent data demonstrating that Parkinson proteins act centrally to various protein quality control pathways at the synapse, and we argue that disturbed synaptic proteostasis is an early driver of neurodegeneration in Parkinson's disease.  相似文献   

7.
The fruit fly, Drosophila melanogaster, has been intensively used as a genetic model system for basic and applied research on human neurological diseases because of advantages over mammalian model systems such as ease of laboratory maintenance and genetic manipulations. Disease-associated gene mutations, whether endogenous or transgenically-inserted, often cause phenotypes in vivo that are similar to the clinical features of the human disorder. The Drosophila genome is simpler than that of mammals, in terms of gene and chromosome number, but nonetheless demonstrates extraordinary phylogenetic conservation of gene structure and function, especially notable among the genes whose mutations cause neurodevelopmental, neuropsychiatric, or neurodegenerative disorders. In addition, its well-established neuroanatomical, developmental, and molecular genetic research techniques allow many laboratories worldwide to study complex biological and genetic processes. Based on these merits of the Drosophila model system, it has been used for screening lifespan expansion and neuroprotective activities of plant extracts or their secondary metabolites to counteract pathological events such as mitochondrial damage by oxidative stress, which may cause sporadic neurodegenerative diseases. In this review, we have summarized that the fruit fly can be used for early-stage drug discovery and development to identify novel plant-derived compounds to protect against neurodegeneration in Alzheimer's disease and Parkinson's disease, and other neurological disorders caused by oxidative stress. Thus, the Drosophila system can directly or indirectly contribute to translational research for new therapeutic strategies to prevent or ameliorate neurodegenerative diseases.  相似文献   

8.
Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic activity and use distinct oxidative damage repair mechanisms to remove oxidative damage from DNA and dNTP pools. Accumulation of this damage in the background of a functional DNA repair response is associated with normal aging, but defective repair in brain cells can contribute to neurological dysfunction. Emerging research strongly associates three common neurodegenerative conditions, Alzheimer's, Parkinson's and stroke, with defects in the ability to repair chronic or acute oxidative damage in neurons. This review explores the current knowledge of the role of oxidative damage repair in preserving brain function and highlights the emerging models and methods being used to advance our knowledge of the pathology of neurodegenerative disease.  相似文献   

9.
Increased oxidative stress has been implicated in the pathogenesis of dopaminergic neurodegeneration leading to the development of Parkinson's disease. In this study, we investigated whether naphtha[1,2-d]thiazol-2-amine (NTA) may ameliorate haloperidol-induced catalepsy and oxidative damage in mice brain. Haloperidol-induced catalepsy was measured with the standard bar test. The extent of oxidative stress has been evaluated by measuring levels of MDA, GSH and activities of antioxidant enzymes (SOD and GSH-Px) from brain homogenate. Haloperidol treatment significantly induced the catalepsy as observed from increased descent time measured in the bar test. Pretreatment with NTA significantly reduced the catalepsy induced by haloperidol in a dose-dependent manner. The elevated level of MDA in haloperidol-treated mice was significantly decreased by NTA pretreatment. The decreased level of GSH as well as SOD and GSH-Px activities in haloperidol-treated mice were significantly increased by NTA pretreatment. NTA reduces the oxidative stress allowing recovery of detoxifying enzyme activities and controlling free radical production, suggesting a potential role of the drug as an alternative/adjuvant drug in preventing and treating the neurodegenerative diseases, such as Parkinson's disease.  相似文献   

10.
Alzheimer’s disease is the leading cause of dementia in the elderly and is defined by two pathological hallmarks; the accumulation of aggregated amyloid beta and excessively phosphorylated Tau proteins. The etiology of Alzheimer’s disease progression is still debated, however, increased oxidative stress is an early and sustained event that underlies much of the neurotoxicity and consequent neuronal loss. Amyloid beta is a metal binding protein and copper, zinc and iron promote amyloid beta oligomer formation. Additionally, copper and iron are redox active and can generate reactive oxygen species via Fenton (and Fenton-like chemistry) and the Haber–Weiss reaction. Copper, zinc and iron are naturally abundant in the brain but Alzheimer’s disease brain contains elevated concentrations of these metals in areas of amyloid plaque pathology. Amyloid beta can become pro-oxidant and when complexed to copper or iron it can generate hydrogen peroxide. Accumulating evidence suggests that copper, zinc, and iron homeostasis may become perturbed in Alzheimer’s disease and could underlie an increased oxidative stress burden. In this review we discuss oxidative/nitrosative stress in Alzheimer’s disease with a focus on the role that metals play in this process. Recent studies have started to elucidate molecular links with oxidative/nitrosative stress and Alzheimer’s disease. Finally, we discuss metal binding compounds that are designed to cross the blood brain barrier and restore metal homeostasis as potential Alzheimer’s disease therapeutics.  相似文献   

11.
Parkinson's disease, the second most common neurodegenerative disorder, affects millions of people globally. There is no cure, and its prevalence will double by 2030. In recent years, numerous causative genes and risk factors for Parkinson's disease have been identified and more than half appear to function at the synapse. Subtle synaptic defects are thought to precede blunt neuronal death, but the mechanisms that are dysfunctional at synapses are only now being unraveled. Here, we review recent work and propose a model where different Parkinson proteins interact in a cell compartment‐specific manner at the synapse where these proteins regulate endocytosis and autophagy. While this field is only recently emerging, the work suggests that the loss of synaptic homeostasis may contribute to neurodegeneration and is a key player in Parkinson's disease.  相似文献   

12.
This review covers the biological activities of the medicinal herb, Rhinacanthus nasutus, which is part of the Acanthaceae family. This herb and the compounds isolated from it have the potential to be used for the treatment of a vast array of diseases, including neurological, (such as Alzheimer’s, Parkinson’s and depression), viral and bacterial infections (such as hepatitis and herpes virus), skin disorders, and control sugar levels in diabetic patients. Many diseases involve oxidative stress, particularly neurological diseases, where oxidative stress leads to neurodegeneration. Medicinal herbs such as R. nasutus appear to be effective at protecting against such oxidative stress. Herein we discuss the potential mechanisms by which they have their antioxidant effects, and their effects on other cellular pathways, which are involved in various disease states.  相似文献   

13.
Neurodegenerative diseases constitute a worldwide health problem. Metals like iron and copper are essential for life, but they are also involved in several neurodegenerative mechanisms such as protein aggregation, free radical generation and oxidative stress. The role of Fe and Cu, their pathogenic mechanisms and possible therapeutic relevance are discussed regarding four of the most common neurodegenerative diseases, Alzheimer's, Parkinson's and Huntington's diseases as well as amyotrophic lateral sclerosis. Metal-mediated oxidation by Fenton chemistry is a common feature for all those disorders and takes part of a self-amplifying damaging mechanism, leading to neurodegeneration. The interaction between metals and proteins in the nervous system seems to be a crucial factor for the development or absence of neurodegeneration. The present review also deals with the therapeutic strategies tested, mainly using metal chelating drugs. Metal accumulation within the nervous system observed in those diseases could be the result of compensatory mechanisms to improve metal availability for physiological processes.  相似文献   

14.
It is generally considered that Parkinson's disease is induced by specific agents that degenerate a clearly defined population of dopaminergic neurons. Data commented in this review suggest that this assumption is not as clear as is often thought and that aging may be critical for Parkinson's disease. Neurons degenerating in Parkinson's disease also degenerate in normal aging, and the different agents involved in the etiology of this illness are also involved in aging. Senescence is a wider phenomenon affecting cells all over the body, whereas Parkinson's disease seems to be restricted to certain brain centers and cell populations. However, reviewed data suggest that Parkinson's disease may be a local expression of aging on cell populations which, by their characteristics (high number of synaptic terminals and mitochondria, unmyelinated axons, etc.), are highly vulnerable to the agents promoting aging. The development of new knowledge about Parkinson's disease could be accelerated if the research on aging and Parkinson's disease were planned together, and the perspective provided by gerontology gains relevance in this field.  相似文献   

15.
This review addresses many of the chemical aspects of nitrosative stress mediated by N2O3. From a cellular perspective, N2O3 and the resulting reactive nitrogen oxide species target specific motifs such as thiols, lysine active sites, and zinc fingers and is dependant upon both the rates of production as well as consumption of NO and must be taken into account in order to access the nitrosative environment. Since production and consumption are integral parts of N2O3 generation, we predict that nitrosative stress occurs under specific conditions, such as chronic inflammation. In contrast to conditions of stress, nitrosative chemistry may also provide cellular protection through the regulation of critical signaling pathways. Therefore, a careful evaluation of the chemistry of nitrosation based upon specific experimental conditions may provide a better understanding of how the subtle balance between oxidative and nitrosative stress may be involved in the etiology and control of various disease processes.  相似文献   

16.
Mitochondrial dysfunction has been proposed as one of the pathobiological underpinnings in Parkinson's disease. Environmental stressors, such as paraquat, induce mitochondrial dysfunction and promote reactive oxygen species production. Targeting oxidative stress pathways could prevent mitochondrial dysfunction and thereby halt the neurodegeneration in Parkinson's disease. Since curcumin is touted as an antioxidant and neuroprotective agent, the aim of this study was to investigate if curcumin is a suitable therapy to target mitochondrial dysfunction in Parkinson's disease using a paraquat-toxicity induced model in fibroblasts from LRRK2-mutation positive Parkinson's disease individuals and healthy controls. The fibroblasts were exposed to five treatment groups, (i) untreated, (ii) curcumin only, (iii) paraquat only, (iv) pre-curcumin group: with curcumin for 2hr followed by paraquat for 24hr and (v) post-curcumin group: with paraquat for 24hr followed by curcumin for 2hr. Mitochondrial function was determined by measuring three parameters of mitochondrial respiration (maximal respiration, ATP-associated respiration, and spare respiratory capacity) using the Seahorse XFe96 Extracellular Flux Analyzer. As expected, paraquat effectively disrupted mitochondrial function for all parameters. Pre-curcumin treatment improved maximal and ATP-associated respiration whereas, post-curcumin treatment had no effect. These findings indicate that curcumin may be most beneficial as a pre-treatment before toxin exposure, which has implications for its therapeutic use. These promising findings warrant future studies testing different curcumin dosages, exposure times and curcumin formulations in larger sample sizes of Parkinson's disease and control participants.  相似文献   

17.
Nitric oxide and other reactive nitrogen species appear to play several crucial roles in the brain. These include physiological processes such as neuromodulation, neurotransmission and synaptic plasticity, and pathological processes such as neurodegeneration and neuroinflammation. There is increasing evidence that glial cells in the central nervous system can produce nitric oxide in vivo in response to stimulation by cytokines and that this production is mediated by the inducible isoform of nitric oxide synthase. Although the etiology and pathogenesis of the major neurodegenerative and neuroinflammatory disorders (Alzheimer's disease, amyothrophic lateral sclerosis, Parkinson's disease, Huntington's disease and multiple sclerosis) are unknown, numerous recent studies strongly suggest that reactive nitrogen species play an important role. Furthermore, these species are probably involved in brain damage following ischemia and reperfusion, Down's syndrome and mitochondrial encephalopathies. Recent evidence also indicates the importance of cytoprotective proteins such as heat shock proteins (HSPs) which appear to be critically involved in protection from nitrosative and oxidative stress. In this review, evidence for the involvement of nitrosative stress in the pathogenesis of the major neurodegenerative/ neuroinflammatory diseases and the mechanisms operating in brain as a response to imbalance in the oxidant/antioxidant status are discussed.  相似文献   

18.
神经退行性疾病如阿尔茨海默病、帕金森病、亨廷顿病等疾病的发生与氧化应激紧密相关。NAD和NADP是维持氧化系统和抗氧化系统平衡的两个关键物质。NAD和NADP的生物合成和降解有多种途径,参与其生物途径的物质如NAMPT、NADK、PARP1、SIRT1、CD38等,均报道在神经退行性疾病发挥一定的作用。因此,本文分别从NAD和NADP的合成和降解途径中的一些关键物质出发,结合氧化应激总结并探讨它们在神经退行性疾病的作用,以期为临床治疗神经退行性疾病提供新思路。  相似文献   

19.
The consequences of oxidative stress and inflammation are implicated in a wide range of diseases, including rheumatoid arthritis and Parkinson's disease. The status of antioxidant capacity in rheumatoid arthritis and Parkinson's disease remains unclear, in part due to common practice of assaying erythrocytes separately to plasma. This method removes any synergistic interactions between plasma and erythrocyte‐based antioxidants. The experiments in this report tested antioxidant capacity in whole blood, erythrocytes and plasma by group and disease stage. Medically diagnosed patients were recruited along with appropriate control group participants. Fasting venous blood was assayed using chemiluminescence methods for: time to maximum light emitted, maximum light emitted, and plasma antioxidant capacity in vitamin E analogue units. Here we demonstrate that whole blood exhibits higher antioxidant capacity than either plasma or erythrocytes assayed separately. We report increased oxidative stress in the blood of rheumatoid arthritis patients by group (p = 0.018, p = 0.049). We show increased antioxidant capacity in Parkinson's disease patients by group (p < 0.001). For later stage Parkinson's disease patients, we report reduced oxidative stress (p = 0.025), and increased antioxidant capacity and for erythrocytes (p < 0.001, p = 0.004) and whole blood (p < 0.001, p = 0.003). Early stage Parkinson's disease showed higher antioxidant capacity on only one measure (p = 0.008). Whole blood chemiluminescence is a useful technique for determining redox status in disease and might help clarify the role of oxidative stress in rheumatoid arthritis and Parkinson's disease.  相似文献   

20.
An elevated concentration of total homocysteine (tHcy) in plasma and cerebrospinal fluid is considered to be a risk factor for Alzheimer''s disease (AD) and Parkinson''s disease (PD). Homocysteine (Hcy) levels are influenced by folate concentrations and numerous genetic factors through the folate cycle, however, their role in the pathogenesis of PD remains controversial. Hcy exerts a neurotoxic action and may participate in the mechanisms of neurodegeneration, such as excitotoxicity, oxidative stress, calcium accumulation, and apoptosis. Elevated Hcy levels can lead to prooxidative activity, most probably through direct interaction with N-methyl-D-aspartate (NMDA) receptors and sensitization of dopaminergic neurons to age-related dysfunction and death. Several studies have shown that higher concentration of Hcy in PD is related to long-term administration of levodopa (L-dopa). An elevation of plasma tHcy levels can also reflect deficiencies of cofactors in remethylation of Hcy to methionine (Met) (folates and vitamin B12) and in its transsulfuration to cysteine (Cys) (vitamin B6). It is believed that the increase in the concentration of Hcy in PD can affect genetic polymorphisms of the folate metabolic pathway genes, such as MTHFR (C677T, A1298C and G1793A), MTR (A2756G), and MTHFD1 (G1958A), whose frequencies tend to increase in PD patients, as well as the reduced concentration of B vitamins. In PD, increased levels of Hcy may lead to dementia, depression and progression of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号