首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cultured fibroblasts from patients with I-cell disease (mucolipidosis II) accumulate excessive amounts of free cystine, similarly to cells from patients with nephropathic cystinosis, a disorder of lysosomal cystine transport. To clarify whether the intralysosomal accumulation of cystine in I-cell-disease fibroblasts was due to a defective disposal mechanism, we measured the rates of clearance of free [35S]cystine from intact normal, cystinotic and I-cell-disease fibroblasts. Loss of radioactivity from the two mutant cell types occurred slowly (t 1/2 = 500 min) compared with the rapid loss from normal cells (t 1/2 = 40 min). Lysosome-rich granular fractions isolated from three different cystine-loaded normal, cystinotic and I-cell-disease fibroblast strains were similarly examined for non-radioactive cystine egress. Normal granular fractions lost cystine rapidly (mean t 1/2 = 43 min), whereas cystinotic granular fractions did not lose any cystine (mean t 1/2 = infinity). I-cell-disease granular fractions displayed prolonged half-times for cystine disposal (mean = 108 min), suggesting that I-cell-disease fibroblasts, like cystinotic cells, possess a defective carrier mechanism for cystine transport.  相似文献   

2.
Gao XD  Wang J  Keppler-Ross S  Dean N 《The FEBS journal》2005,272(10):2497-2511
Cystinosis is a lysosomal storage disease caused by an accumulation of insoluble cystine in the lumen of the lysosome. CTNS encodes the lysosomal cystine transporter, mutations in which manifest as a range of disorders and are the most common cause of inherited renal Fanconi syndrome. Cystinosin, the CTNS product, is highly conserved among mammals. Here we show that the yeast Ers1 protein and cystinosin are functional orthologues, despite sharing only limited sequence homology. Ers1 is a vacuolar protein whose loss of function results in growth sensitivity to hygromycin B. This phenotype can be complemented by the human CTNS gene but not by mutant ctns alleles that were previously identified in cystinosis patients. A genetic screen for multicopy suppressors of an ers1Delta yeast strain identified a novel gene, MEH1, which is implicated in regulating Ers1 function. Meh1 localizes to the vacuolar membrane and loss of MEH1 results in a defect in vacuolar acidification, suggesting that the vacuolar environment is critical for normal ERS1 function. This genetic system has also led us to identify Gtr1 as an Meh1 interacting protein. Like Meh1 and Ers1, Gtr1 associates with vacuolar membranes in an Meh1-dependent manner. These results demonstrate the utility of yeast as a model system for the study of CTNS and vacuolar function.  相似文献   

3.
Cystinosis is an inherited disorder due to mutations in the CTNS gene which encodes cystinosin, a lysosomal transmembrane protein involved in cystine export to the cytosol. Both accumulation of cystine in the lysosome and decreased cystine in the cytosol may participate in the pathogenic mechanism underlying the disease. We observed that cystinotic cell lines have moderate decrease of glutathione content during exponential growth phase. This resulted in increased solicitation of oxidative defences of the cell denoted by concurrent superoxide dismutase induction, although without major oxidative insult under our experimental conditions. Finally, decreased glutathione content in cystinotic cell lines could be counterbalanced by a series of exogenous precursors of cysteine, denoting that lysosomal cystine export is a natural source of cellular cysteine in the studied cell lines.  相似文献   

4.
Human diploid fibroblasts take up cystine in the culture medium and the cystine is immediately reduced to cysteine in the cells. It is found that cysteine thus formed is rapidly released from the cells into the medium and accumulates there. The system transporting cysteine is convincingly similar to the ASC system described by Christensen et al. (1967). Since cysteine in the medium is sensitive to autoxidation and readily changes back to cystine, the uptake of cystine seems crucial to the cells. Inhibitors of cystine uptake, such as glutamate and homocysteate, potently reduce the intracellular and extracellular levels of cysteine. These inhibitors modify the cell growth depending upon the cystine concentration is physiological. An excessive concentration of cystine is in itself inhibitory action is antagonized by glutamate or homocysteate.  相似文献   

5.
R Steinherz  N Makov  R Narinsky  B Meidan  G Kohn 《Enzyme》1984,32(2):126-130
I-cell fibroblasts can accumulate cystine at levels comparable to those seen in homozygous cystinotic fibroblasts. Cystine accumulation in cystinosis is accounted for cystine clearance defect in situ. To unravel the question whether the same clearance defect or two different mechanisms cause cystine accumulation in I-cell disease, we used the cystine loading technique upon exposure of skin fibroblasts to radioactive cystine dimethyl ester. Normal, cystinotic and I-cell fibroblasts were exposed to radioactive cystine dimethyl ester, and the clearance of the generated radioactive cystine was measured. Cystinotic cells showed a marked defect in cystine clearance in situ, as compared to normal fibroblasts. In I-cell fibroblasts, we observed slow hydrolysis of cystine dimethyl ester to cystine, indicating low esterase activity, but no defect in clearance of the generated cystine. Cysteine production from the exogenous cystine dimethyl ester, presumably by cytoplasmic hydrolysis of the generated cystine, is normal in I-cell fibroblasts. Thus, our results indicate that, unlike cystinosis, there is no cystine clearance defect in situ for cystine in I-cell disease, and probably unrelated mechanisms cause cystine storage in cystinosis and I-cell disease.  相似文献   

6.
The presence of a significantly increased content of free-cystine in skin fibroblasts from both homozygotes and heterozygotes for cystinosis emphasizes the central role of cystine in this disease, even though the primary defect responsible for cystine accumulation is yet to be determined. The studies described in this communication provide evidence that cystine is compartmentalized in a subcellular location in cystinotic cells. In fact, the very growth of cystinotic fibroblasts in the presence more than 100 times the usual content of free-cystine is evidence that the accumulated cystine is not freely dispersed throughout the cell, since would otherwise inhibit many enzymes requiring free sulfhydryl groups for activity (Patrick, 1965). We have no evidence as to whether the cystine is located in a known subcellular organelle or in a previously unrecognized location. Skin fibroblasts may provide a convenient tool to pursue these questions.  相似文献   

7.
The accumulation of cystine in cystinotic fibroblasts from free and protein-linked cystine has been investigated. Cystine is not accumulated from cysteine but is readily accumulated from cystine. The accumulation from free cystine does not occur as a result of pinocytosis or from the degradation of a rapidly metabolized protein pool. Further studies of the degradation of disulphide-containing proteins by these cells may aid understanding of the mechanisms of proteolysis.  相似文献   

8.
The normal products of the murine Steel (Sl) and Dominant white spotting (W) genes are essential for the development of melanocyte precursors, germ cells, and hematopoietic cells. The Sl locus encodes stem cell factor (SCF), which is the ligand of c-kit, a receptor tyrosine kinase encoded by the W locus. One allele of the Sl mutation, Sl17H, exhibits minor hematopoietic defects, sterility only in males, and a complete absence of coat pigmentation. The Sl17H gene encodes SCF protein which exhibits an altered cytoplasmic domain due to a splicing defect. In this paper we analyzed the mechanism by which the pigmentation phenotype in Sl17H mutant mice occurs. We show that in embryos homozygous for Sl17H the number of melanocyte precursors is severely reduced on the lateral neural crest migration pathway by e11.5 and can no longer be detected by e13.5 when they would enter the epidermis in wildtype embryos. The reduced number of dispersing melanocyte precursors correlates with a reduction of SCF immunoreactivity in mutant embryos in all tissues examined. Regardless of the reduced amount, functional SCF is present at the cell surface of fibroblasts transfected with Sl17H mutant SCF cDNA. Since SCF immunoreactivity normally accumulates in basolateral compartments of SCF-expressing embryonic epithelial tissues, we analyzed the localization of wildtype and Sl17H mutant SCF protein in transfected epithelial (MDCK) cells in vitro. As expected, wildtype forms of SCF localize to and are secreted from the basolateral compartment. In contrast, mutant forms of SCF, which either lack a membrane anchor or exhibit the Sl17H altered cytoplasmic tail, localize to and are secreted from the apical compartment of the cultured epithelium. We suggest, therefore, that the loss of melanocyte precursors prior to epidermal invasion, and the loss of germ cells from mature testis, can be explained by the inability of Sl17H mutant SCF to be targeted to the basolateral compartment of polarized epithelial keratinocytes and Sertoli cells, respectively.  相似文献   

9.
Gu BW  Fan JM  Bessler M  Mason PJ 《Aging cell》2011,10(2):338-348
Mutations in DKC1, encoding telomerase associated protein dyskerin, cause X-linked dyskeratosis congenita (DC), a bone marrow (BM) failure, and cancer susceptibility syndrome. Decreased accumulation of telomerase RNA resulting in excessive telomere shortening and premature cellular senescence is thought to be the primary cause of disease in X-linked DC. Affected tissues are those that require constant renewal by stem cell activity. We previously showed that in Dkc1(Δ15) mice, which contain a mutation that is a copy of a human mutation causing DC, mutant cells have a telomerase-dependent proliferative defect and increased accumulation of DNA damage in the first generation before the telomeres are short. We now demonstrate the presence of the growth defect in Dkc1(Δ15) mouse embryonic fibroblasts in vitro and show that accumulation of DNA damage and levels of reactive oxygen species increase with increasing population doublings. Treatment with the antioxidant, N-acetyl cysteine (NAC), partially rescued the growth disadvantage of mutant cells in vitro and in vivo. Competitive BM repopulation experiments showed that the Dkc1(Δ15) mutation is associated with a functional stem cell defect that becomes more severe with increasing age, consistent with accelerated senescence, a hallmark of DC hematopoiesis. This stem cell phenotype was partially corrected by NAC treatment. These results suggest that a pathogenic Dkc1 mutation accelerates stem cell aging, that increased oxidative stress might play a role in the pathogenesis of X-linked DC, and that some manifestations of DC may be prevented or delayed by antioxidant treatment.  相似文献   

10.
Cystinosis is an autosomal recessive disorder characterized by defective transport of cystine across the lysosomal membrane and resulting in renal, ophthalmic, and other organ abnormalities. Mutations in the CTNS gene cause a deficiency of the transport protein, cystinosin. We performed mutation analysis of CTNS in six cystinosis patients from four families in Thailand. Using PCR sequencing of the entire coding regions, we identified all eight mutant alleles, including two mutations, p.G309D and p.Q284X, that have not been previously reported. This study expands the mutational and population spectrum of nephropathic cystinosis.  相似文献   

11.
Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.  相似文献   

12.
Cystinosis is an autosomal recessive disorder characterized by an accumulation of intralysosomal cystine. The causative gene, CTNS, encodes cystinosin, a seven-transmembrane-domain protein, which we recently showed to be a lysosomal cystine transporter. The most severe and frequent form of cystinosis, the infantile form, appears around 6 to 12 months, with a proximal tubulopathy (de Toni-Debré-Fanconi syndrome) and ocular damage. End-stage renal failure is reached by 10 years of age. Accumulation of cystine in all tissues eventually leads to multisystemic disease. Treatment with cysteamine, which reduces the concentration of intracellular cystine, delays disease progression but has undesirable side effects. We report the first Ctns knockout mouse model generated using a promoter trap approach. We replaced the last four Ctns exons by an internal ribosome entry site-betagal-neo cassette and showed that the truncated protein was mislocalized and nonfunctional. Ctns(-/-) mice accumulated cystine in all organs tested, and cystine crystals, pathognomonic of cystinosis, were observed. Ctns(-/-) mice developed ocular changes similar to those observed in affected individuals, bone defects and behavioral anomalies. Interestingly, Ctns(-/-) mice did not develop signs of a proximal tubulopathy, or renal failure. A preliminary therapeutic trial using an oral administration of cysteamine was carried out and demonstrated the efficiency of this treatment for cystine clearance in Ctns(-/-) mice. This animal model will prove an invaluable and unique tool for testing emerging therapeutics for cystinosis.  相似文献   

13.
In the marine crop Pyropia yezoensis (Ueda) M. S. Hwang et H. G. Choi, it is known that conchospores from heterozygous conchocelis develop into sectored gametophytic blades (chimeras), but archeospores asexually released from haploid blades do not usually grow into chimeric blades. In this study, chimeras with mosaic pattern consisting of the green and wildtype colors were developed from archeospores that were released from a blade piece containing a cell cluster of green color induced by heavy‐ion beam irradiation. To make clear whether these archeospores were produced from the green‐colored cells or the wildtype‐colored cells, cell clusters of the green mutant, wildtype, and mosaic pattern were cut out from the grown chimera, and archeospores were released from each of the three blade pieces. Archeospores from the green‐mutant blade piece and from the wildtype blade piece developed into only green‐mutant blades and wildtype blades, respectively. In contrast, archeospores from the blade piece with mosaic pattern developed into green‐mutant blades, wildtype blades, and chimeric blades with mosaic pattern of the two colors, although the frequency of the chimeras was low. Because each gametophytic cell possesses a single plastid, it is difficult to explain the occurrence of the new chimeras as a mutation of the plastid DNA. Thus, the new chimeras are considered to be due to transposable elements in Pyropia.  相似文献   

14.
Megakaryopoiesis is the process of formation of mature megakaryocytes that takes place in the bone marrow niche resulting in the release of platelets into the peripheral blood. It has been suggested that cell to cell communication in this dense bone marrow niche may influence the fate of the cells. Numerous studies point to the role of exosomes and microvesicles not only as a messenger of the cellular crosstalk but also in growth and developmental process of various cell types. In the current study, we explored the effects of megakaryocyte-derived microvesicles in hematopoietic cell lines in the context of differentiation. Our study demonstrated that microvesicles isolated from the induced megakaryocytic cell lines have the ability to stimulate noninduced cells specifically into that particular lineage. We showed that this lineage commencement comes from the change in the methylation status of Notch1 promoter, which is regulated by DNA methyltransferases.  相似文献   

15.
Milsom MD  Williams DA 《DNA Repair》2007,6(8):1210-1221
Gene transfer into hematopoietic stem cells (HSC) provides a potential means of correcting monogenic defects and altering drug sensitivity of normal bone marrow to cytotoxic agents. These applications have significant therapeutic potential but the translation of successful murine studies into human therapies has been hindered by low gene transfer in large animals (including humans), and recent serious side effects in a human immunodeficiency trial related to insertional mutagenesis. The latter trial, along with other subsequent trials, while bringing into focus the potential risks of integrating vector systems, also clearly demonstrate the potential usefulness of in vivo selection as it relates to inefficient stem cell transduction. Developing from initial studies by our group and other investigators in which drug resistance was utilized to demonstrate the feasibility of using gene transfer to effect protection from myelotoxicity of chemotherapeutic agents, expression of mutant forms of O(6)-methyguanine-DNA-methytransferase (MGMT) coupled with the simultaneous use of pharmacologic inhibitors and chemotherapeutic agents has been shown to provide a powerful method to select HSC in vivo. While stem and progenitor cell protection and resulting selection in vivo has potential applications for the treatment of selected cancers (allowing dose escalation) and for correction of monogenic disease (allowing an iatrogenic survival advantage of transduced cells in vivo), such an in vivo selection may have untoward effects on stem cell behavior. These deleterious effects may include stem cell exhaustion; lineage skewing; accumulation of genotoxic lesions; and clonal dominance driven towards a pro-leukemic phenotype. Knowledge of the likelihood of such deleterious events occurring as well as their potential implications will be critical to future clinical applications and may also enhance our understanding of both normal stem cell behavior and the evolution of hematopoietic malignancies.  相似文献   

16.
17.
The purified chymotrypsin-like protease of Treponema denticola, designated dentilisin or PrtP (DDBJ accession no. D83264), can disrupt cell-cell junctions and impair the barrier function of epithelial monolayers in vitro. Serine protease inhibitors block these effects. Yet, the protease is apparently less significant in perturbing intracellular signaling pathways and cytoskeletal rearrangement in fibroblasts. The purpose of this study was to use a PrtP-deficient mutant of T. denticola to confirm that the cytopathic effects of whole bacteria and its outer membrane on epithelial cell junctions were primarily accounted for by the activity of this protease. The prtP gene of ATCC 35405 was inactivated by insertion of an erythromycin-resistance cassette, yielding mutant K1. In contrast to wildtype ATCC 35405, mutant K1 grew in tight cell aggregates; the cells had a disrupted outer sheath, as determined by electron microscopy. When compared by silver stained SDS-PAGE of sonicated extracts of whole cells, the extract of mutant K1 was missing a band at approximately 90 kDa that was present in the wildtype ATCC 35405 strain. Whole cells and Triton X-100 outer membrane (OM) extracts of K1 and the wildtype strains were compared 1) for SAAPNA degrading activity by a colorimetric assay, 2) for stress fiber disruption in human gingival fibroblasts (HGF) by fluorescence microscopy of TRITC-phalloidin stained cells, and 3) the OM extracts only for perturbation of HEp-2 epithelial monolayers by electrical cell-substrate impedance sensing (ECIS). Mutant K-1 cells and OM had no SAPPNA degrading activity that is characteristic of dentilisin. K1 cells had HGF stress fiber disrupting activity (86 +/- 4.5% of HGFs affected) equivalent to both 35405 wildtype strains (84 +/- 3.9% and 71 +/- 14.1% of HGF, respectively). Yet, mutant K1 OM had diminished stress fiber disrupting activity (12.9 +/- 4.6% of HGF) compared with its parent 35405's OM (94.6 +/- 2.9%). The major cytopathogenic difference between the K1 mutant and wildtype strains was in their OM's effect on epithelial cell junctions. ATCC 35405 OM completely disrupted epithelial resistance in a concentration - dependent manner; mutant K1 OM had negligible effects. These data confirm that inactivation of the prtP gene completely reverses T. denticola's disruption of epithelial junctions, but there are pleiotropic effects of the mutation that may account for its apparently diminished effects on the cytoskeleton of HGF when the cells were challenged with OM extracts.  相似文献   

18.
19.
Exchange of cystine and glutamate across plasma membrane of human fibroblasts   总被引:16,自引:0,他引:16  
It is found that both the inward and outward transport of cystine and glutamate through the plasma membrane of cultured human fibroblasts is mediated mostly by a single transport system. Cystine and glutamate at one side of the membrane stimulate the passage of these amino acids present at the other side of the membrane. When the concentration of intracellular glutamate is reduced to near zero, cystine hardly enters the cell, and likewise the release of glutamate from the cell ceases when cystine is absent in the medium. Homocysteate and alpha-aminoadipate share this transport system and, when added, similarly participate in the transport process. Since the intracellular pool of cystine is negligibly small whereas that of glutamate is very large, the physiologic flows via this system are the entry of cystine and the exodus of glutamate coupled together. Measurements of the rate of uptake of cystine into the cells and the rate of release of glutamate from the cells indicate that the entry of cystine and the exodus of glutamate occur at a ratio close to 1:1. Since cystine is known to behave as an anionic form in this transport, it is concluded that the transport system for cystine and glutamate in plasma membrane of human fibroblasts is a kind of an anion-exchanging agency.  相似文献   

20.
Y R Zou  S Takeda    K Rajewsky 《The EMBO journal》1993,12(3):811-820
The production of lambda chain-expressing B cells was studied in mice in which either the gene encoding the constant region of the kappa chain (C kappa) or the intron enhancer in the Ig kappa locus was inactivated by insertion of a neomycin resistance gene. The two mutants have similar phenotypes: in heterozygous mutant mice the fraction of lambda chain-bearing B cells is twice that in the wildtype. Homozygous mutants produce approximately 7 times more lambda-expressing B cells (and about 2.3 times fewer total B cells) in the bone marrow than their normal counterparts, suggesting that B cell progenitors can differentiate into either kappa- or lambda-producing cells and do the latter in the mutants. Whereas gene rearrangements in the Ig kappa locus are blocked in the case of enhancer inactivation, they still occur in that of the C kappa mutant, although in this mutant RS rearrangement is lower than in the wildtype. This indicates that gene rearrangements in the Ig lambda locus can occur in the absence of a putative positive signal resulting from gene rearrangements in Ig kappa, including RS recombination. Complementing these results, we also present data indicating that in normal B cell development kappa chain rearrangement can be preceded by lambda chain rearrangement and that the frequency of kappa/lambda double producers is small and insufficient to explain the massive production of lambda chain-expressing B cells in the mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号