首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A key virulence trait of pathogenic bacteria is the ability to bind to receptors on mucosal cells. Here the potential glycosphingolipid receptors of enterohemorrhagic Escherichia coli were examined by binding of 35S-labeled bacteria to glycosphingolipids on thin-layer chromatograms. Thereby a selective interaction with two nonacid glycosphingolipids of cat small intestinal epithelium was found. The binding-active glycosphingolipids were isolated and, on the basis of mass spectrometry, proton NMR spectroscopy, and degradation studies, identified as Galalpha3Galbeta4Glcbeta1Cer (isoglobotriaosylceramide) and Galalpha3Galalpha3Galbeta4Glcbeta1Cer. The latter glycosphingolipid has not been described before. The interaction was not based on terminal Galalpha3 because the bacteria did not recognize the structurally related glycosphingolipids Galalpha3Galalpha4Galbeta4Glcbeta1Cer and Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer (B5 glycosphingolipid). However, further binding assays using reference glycosphingolipids showed that the enterohemorrhagic E. coli also bound to lactosylceramide with phytosphingosine and/or hydroxy fatty acids, suggesting that the minimal structural element recognized is a correctly presented lactosyl unit. Further binding of neolactotetraosylceramide, lactotetraosylceramide, the Le(a)-5 glycosphingolipid, as well as a weak binding to gangliotriaosylceramide and gangliotetraosylceramide, was found in analogy with binding patterns that previously have been described for other bacteria classified as lactosylceramide-binding.  相似文献   

2.
Glycosphingolipid recognition by two isolectins from Solanum tuberosum was compared by the chromatogram binding assay. One lectin (PL-I) was isolated from potato tubers by affinity chromatography, and identified by MALDI-TOF mass spectrometry as a homodimer with a subunit molecular mass of 63,000. The other (PL-II) was a commercial lectin, characterized as two homodimeric isolectins with subunit molecular masses of 52,000 and 55,000, respectively. Both lectins recognized N-acetyllactosamine-containing glycosphingolipids, but the fine details of their carbohydrate binding specificities differed. PL-II preferentially bound to glycosphingolipids with N-acetyllactosamine branches, as Galbeta4GlcNAcbeta6(Galbeta4GlcNAcbeta3)Galbeta4Glcbeta1C er. PL-I also recognized this glycosphingolipid, but bound equally well to the linear glycosphingolipid Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. Neolactotetraosylceramide and the B5 pentaglycosylceramide were also bound by PL-I, while other glycosphingolipids with only one N-acetyllactosamine unit were non-binding. Surprisingly, both lectins also bound to lactosylceramide, with an absolute requirement for sphingosine and non-hydroxy fatty acids. The inhibition of binding to both lactosylceramide and N-acetyllactosamine-containing glycosphingolipids by N-acetylchitotetraose suggests that lactosylceramide is also accomodated within the N-acetylchitotetraose/N-acetyllactosamine-binding sites of the lectins. Through docking of glycosphingolipids onto a three-dimensional model of the PL-I hevein binding domain, a Galbeta4GlcNAcbeta3Galbeta4 binding epitope was defined. Furthermore, direct involvement of the ceramide in the binding of lactosylceramide was suggested.  相似文献   

3.
The B-subunits of cholera toxin (CTB) and Escherichia coli heat-labile enterotoxin (LTB) are structurally and functionally related. However, the carbohydrate binding specificities of the two proteins differ. While both CTB and LTB bind to the GM1 ganglioside, LTB also binds to N-acetyllactosamine-terminated glycoconjugates. The structural basis of the differences in carbohydrate recognition has been investigated by a systematic exchange of amino acids between LTB and CTB. Thereby, a CTB/LTB hybrid with a gain-of-function mutation resulting in recognition of blood group A and B determinants was obtained. Glycosphingolipid binding assays showed a specific binding of this hybrid B-subunit, but not CTB or LTB, to slowly migrating non-acid glycosphingolipids of human and animal small intestinal epithelium. A binding-active glycosphingolipid isolated from cat intestinal epithelium was characterized by mass spectrometry and proton NMR as GalNAcalpha3(Fucalpha2)Galbeta4(Fucalpha3)Glc NAcbeta3Galbeta4Glc NAcbeta3Galbeta4Glcbeta1Cer. Comparison with reference glycosphingolipids showed that the minimum binding epitope recognized by the CTB/LTB hybrid was Galalpha3(Fucalpha2)Galbeta4(Fucalpha3)GlcNAc beta. The blood group A and B determinants bind to a novel carbohydrate binding site located at the top of the B-subunit interfaces, distinct from the GM1 binding site, as found by docking and molecular dynamics simulations.  相似文献   

4.
Glycoconjugates of the GI tract are important for microbial interactions. The expression of histo-blood group glycosyltransferases governs both the expression of blood group determinants and in part the structure and size of the glycoconjugates. Using neutral glycolipids isolated from the small intestine of a rare blood group O Le(a-b-) ABH secretor-negative (nonsecretor) individual we were able to map the "default" pathway of the individual lacking ABO, Lewis, and secretor glycosyltransferases. Structures were deduced with combined analysis of mass spectrometry (MALDI-TOF and ESI-MS/MS), and 1H NMR (500 and 600 MHz). All structures present at a level >5% were structurally resolved and included two extended structures: Galbeta4(Fucalpha3)GlcNAcbeta3(Galbeta4[Fucalpha3]GlcNAcbeta6)Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer and Galbeta3GlcNAcbeta3(Galbeta4[Fucalpha3]GlcNAcbeta6)Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer. The first, a novel component, is based on a type 2 chain and bears the Lex glycotopes on both its branches. The second, a major component, is based on a type 1 chain, which bears a 3-linked type 1 precursor (Lec) glycotope and a 6-linked Lex glycotope on its branches. This latter structure is identical to that previously isolated from plasma and characterized by MS and GC-MS but not by NMR. Structural resolution of these structures was supported by reanalysis of the blood group H-active decaosylceramides previously isolated from rat small intestine. Other minor linear monofucosylated penta-, hepta-, and difucosylated octaosylceramides, some bearing blood group determinants, were also identified. The cumulative data were used to define a default biosynthesis pathway where it can be seen that carbohydrate chain extension, in the absence of blood group glycosyltransferases, is controlled and regulated by non-blood group fucosylation and branching with type 2 Galbeta4GlcNAc branches.  相似文献   

5.
Many bacterial toxins utilize cell surface glycoconjugate receptors for attachment to target cells. In the present study the potential carbohydrate binding of Helicobacter pylori vacuolating cytotoxin VacA was investigated by binding to human gastric glycosphingolipids on thin-layer chromatograms. Thereby a distinct binding of the toxin to two compounds in the non-acid glycosphingolipid fraction was detected. The VacA-binding glycosphingolipids were isolated and characterized by mass spectrometry and proton NMR as galactosylceramide (Galbeta1Cer) and galabiosylceramide (Galalpha4Galbeta1Cer). Comparison of the binding preferences of the protein to reference glycosphingolipids from other sources showed an additional recognition of glucosylceramide (Glcbeta1Cer), lactosylceramide (Galbeta4Glcbeta1Cer) and globotriaosylceramide (Galalpha4Galbeta4Glcbeta1Cer). No binding to the glycosphingolipids recognized by the VacA holotoxin was obtained with a mutant toxin with deletion of the 37 kDa fragment of VacA (P58 molecule). Collectively our data show that the VacA cytotoxin is a glycosphingolipid binding protein, where the 37 kDa moiety is required for carbohydrate recognition. The ability to bind to short chain glycosphingolipids will position the toxin close to the cell membrane, which may facilitate toxin internalization.  相似文献   

6.
The major neutral glycosphingolipids (GSLs) of High Five insect cells have been extracted, purified, and characterized. It was anticipated that GSLs from High Five cells would follow the arthro-series pathway, known to be expressed by both insects and nematodes at least through the common tetraglycosylceramide (Glcbeta1Cer --> Manbeta4Glcbeta1Cer [MacCer] --> GlcNAcbeta3Manbeta4Glcbeta1Cer [At(3)Cer] --> GalNAcbeta4- GlcNAcbeta3Manbeta4Glcbeta1Cer [At(4)Cer]). Surprisingly, the structures of the major neutral High Five GSLs already diverge from the arthro-series pathway at the level of the triglycosylceramide. Studies by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization mass spectrometry (ESI-MS) showed the structure of the predominant High Five triglycosylceramide to be Galbeta3Manbeta4Glcbeta1Cer, whereas the predominant tetraglycosylceramide was characterized as GalNAcalpha4Galbeta3Manbeta4- Glcbeta1Cer. Both of these structures are novel products for any cell or organism so far studied. The GalNAcalpha4 and Galbeta3 units are found in insect GSLs, but always as the fifth and sixth residues linked to GalNAcbeta4 in the arthro-series penta- and hexaglycosylceramide structures (At(5)Cer and At(6)Cer, respectively). The structure of the High Five tetraglycosylceramide thus requires a reversal of the usual order of action of the glycosyltransferases adding the GalNAcalpha4 and Galbeta3 residues in dipteran GSL biosynthesis and implies the existence of an insect Galbeta3-T capable of using Manbeta4Glcbeta1Cer as a substrate with high efficiency. The results demonstrate the potential appearance of unexpected glycoconjugate biosynthetic products even in widely used but unexamined systems, as well as a potential for core switching based on MacCer, as observed in mammalian cells based on the common LacCer intermediate.  相似文献   

7.
Acidic and neutral glycosphingolipids were isolated from a human gastric adenocarcinoma, and binding of Helicobacter pylori to the isolated glycosphingolipids was assessed using the chromatogram binding assay. The isolated glycosphingolipids were characterized using fast atom bombardment mass spectrometry and by binding of antibodies and lectins. The predominating neutral glycosphingolipids were found to migrate in the di- to tetraglycosylceramide regions as revealed by anisaldehyde staining and detection with lectins. No binding of H. pylori to these compounds was obtained. The most abundant acidic glycosphingolipids, migrating as the GM3 ganglioside and sialyl-neolactotetraosylceramide, were not recognized by the bacteria. Instead, H. pylori selectively interacted with slow-migrating, low abundant gangliosides not detected by anisaldehyde staining. Binding-active gangliosides were isolated and characterized by mass spectrometry, proton nuclear magnetic resonance, and lectin binding as sialyl-neolactohexaosylceramide (NeuAcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and sialyl-neolactooctaosylceramide (NeuAcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer).  相似文献   

8.
Wu JH  Singh T  Herp A  Wu AM 《Biochimie》2006,88(2):201-217
Ricin (RCA60) is a potent cytotoxic protein with lectin domains, contained in the seeds of the castor bean Ricinus communis. It is a potential biohazard. To corroborate the biological properties of ricin, it is essential to understand the recognition factors involved in the ricin-glycotope interaction. In previous reports, knowledge of the binding properties of ricin was limited to oligosugars and glycopeptides with different specificities. Here, recognition factors of the lectin domains in ricin were examined by enzyme-linked lectinosorbent (ELLSA) and inhibition assays, using mammalian Gal/GalNAc structural units and corresponding polyvalent forms. Except for blood group GalNAcalpha1-3Gal (A) active and Forssman (GalNAcalpha1-3GalNAc, F) disaccharides, ricin has a broad range of affinity for mammalian disaccharide structural units-Galbeta1-4Glcbeta1-(Lbeta), Galbeta1-4GlcNAc (II), Galbeta1-3GlcNAc (I), Galbeta1-3GalNAcalpha1-(Talpha), Galbeta1-3GalNAcbeta1-(Tbeta), Galalpha1-3Gal (B), Galalpha1-4Gal (E), GalNAcbeta1-3Gal (P), GalNAcalpha1-Ser/Thr (Tn) and GalNAcbeta1-4Gal (S). Among the polyvalent glycotopes tested, ricin reacted best with type II-containing glycoproteins (gps). It also reacted well with several T (Thomsen-Friedenreich), tumor-associated Tn and blood group Sd. (a+)-containing gps. Except for bird nest and Tamm-Horsfall gps (THGP), this lectin reacted weakly or not at all with ABH-blood type and sialylated gps. From the present and previous results, it can be concluded that: (i) the combining sites of these lectin domains should be a shallow-groove type, recognizing Galbeta1-4Glcbeta1- and Galbeta1-3(4)GlcNAcbeta- as the major binding site; (ii) its size may be as large as a tetrasaccharide and most complementary to lacto-N-tetraose (Galbeta1-3GlcNAc beta1-3Galbeta1-4Glc) and lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc); (iii) the polyvalency of glycotopes, in general, enhances binding; (iv) a hydrophobic interaction in the vicinity of the binding site for sugar accommodation, increases the affinity for Galbeta-. This study should assist in understanding the glyco-recognition factors involved in carbohydrate-toxin interactions in biological processes. The effect of the polyvalent P/S glycotopes on ricin binding should be examined. However, this is hampered by the lack of availability of suitable reagents.  相似文献   

9.
The type B-specific lectin from the mushroom Marasmius oreades was immobilized onto Sepharose 4B. The immobilized lectin bound murine laminin and bovine thyroglobulin, glycoproteins that contain the Galalpha1,3Galbeta1,4GlcNAc epitope. This epitope is responsible for hyperacute rejection of xenotransplants from lower mammals to humans, Old World monkeys, or apes. The immobilized lectin also bound a fraction of serum proteins from type B human serum but little or none from type A or O(H) serum. The major protein bound from human B serum was a portion of the alpha2-macroglobulin. Treatment of this fraction with N-glycosidase F resulted in decreased molecular weight of bands associated with alpha2-macroglobulin and loss of their M. oreades lectin reactivity, whereas on treatment with coffee bean alpha-galactosidase, this bound fraction also lost reactivity with M. oreades lectin but became reactive with Ulex europaeus I lectin, suggesting the presence of L-fucosyl-alpha1,2-terminated structures. The presence of blood group epitopes on alpha2-macroglobulin has been detected previously by immunological methods, but this is the first isolation and characterization of the specifically glycosylated fraction of this serum protein. The immobilized lectin also bound a number of proteins from pig, rabbit, and rat serum that were distinct in electrophoretic mobility from the human B-serum components and presumably contain the xenotransplantation epitope among their glycan structures. This report further demonstrates the utility of immobilized lectins in isolating and characterizing glycan structures of naturally occurring glycoproteins.  相似文献   

10.
Wu AM  Wu JH  Singh T  Liu JH  Tsai MS  Gilboa-Garber N 《Biochimie》2006,88(10):1479-1492
Pseudomonas aeruginosa Fuc > Man specific lectin, PA-IIL, is an important microbial agglutinin that might be involved in P. aeruginosa infections in humans. In order to delineate the structures of these lectin receptors, its detailed carbohydrate recognition profile was studied both by microtiter plate biotin/avidin-mediated enzyme-lectin-glycan binding assay (ELLSA) and by inhibition of the lectin-glycan interaction. Among 40 glycans tested for binding, PA-IIL reacted well with all human blood group ABH and Le(a)/Le(b) active glycoproteins (gps), but weakly or not at all with their precursor gps and N-linked gps. Among the sugar ligands tested by the inhibition assay, the Le(a) pentasaccharide lacto-N-fucopentaose II (LNFP II, Galbeta1-3[Fucalpha1-4]GlcNAcbeta1-3Galbeta1-4Glc) was the most potent one, being 10 and 38 times more active than the Le(x) pentasaccharide (LNFP III, Galbeta1-4 [Fucalpha1-3]GlcNAcbeta1-3Galbeta1-4Glc) and sialyl Le(x) (Neu5Acalpha2-3Galbeta1-4[Fucalpha1-3] GlcNAc), respectively. It was 120 times more active than Man, while Gal and GalNAc were inactive. The decreasing order of PA-IIL affinity for the oligosaccharides tested was: Le(a) pentaose > or = sialyl Le(a) tetraose > methyl alphaFuc > Fuc and Fucalpha1-2Gal (H disaccharide)>2'-fucosyllactose (H trisaccharide), Le(x) pentaose, Le(b) hexaose (LNDFH I) and gluco-analogue of Le(y) tetraose (LDFT)>H type I determinant (LNFP I)>Le(x) trisaccharide (Galbeta1-4[Fucalpha1-3]GlcNAc) > sialyl Le(x) trisaccharide > Man > Gal, GalNAc, and Glc (inactive). The results presented here, in accordance with the crystal 3D structural data, imply that the combining site of PA-IIL is a small cavity-type best fitting Fucalpha1- with a specific shallow groove subsite for the remainder part of the Le(a) saccharides, and that polyvalent glycotopes enhance the reactivity. The Fuc > Man Ralstonia solanacearum lectin RSL, which resembles PA-IIL in sugar specificity, differs from it in it's better fit to the B and A followed by H oligosaccharides vs. Fuc, whereas, the second R. solanacearum lectin RS-IIL (the structural homologue of PA-IIL) binds Man > Fuc. These results provide a valuable information on PA-IIL interactions with mammalian glycoforms and the possible spectrum of attachment sites for the homing of this aggressive bacterium onto the target molecules. Such information might be useful for the antiadhesive therapy of P. aeruginosa infections.  相似文献   

11.
12.
Helicobacter pylori is a bacterium that colonizes the stomach of a majority of the global human population causing common gastric diseases like ulcers and cancer. It has an unusually complex pattern of binding to various host glycoconjugates including interaction with sialylated, sulfated, and fucosylated sequences. The present study describes an additional binding epitope comprising the neolacto internal sequence of GlcNAcbeta3-Galbeta4GlcNAcbeta. The binding was detected on TLC plates as an interaction with a seven-sugar ganglioside of rabbit thymus. The glycolipid was purified and characterized as Neu5Gcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3-Galbeta4Glcbeta1Cer with less than 10% of the fraction carrying a repeated lacto (type-1) core chain, Galbeta3Glc-NAcbeta3Galbeta3GlcNAcbeta. After stepwise chemical and enzymatic degradation and structural analysis of products the strongest binder was found to be the pentaglycosylceramide GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer, whereas the hexa- and tetraglycosylceramides were less active, and the trihexosylceramide was inactive. Further studies revealed that the terminal GlcNAcbeta of the pentaglycosylceramide may be exchanged for either GalNAcbeta3, GalNAcalpha3, or Galalpha3 without loss of the activity. Calculated minimum energy conformers of these four isoreceptors show a substantial topographical similarity suggesting that this binding is a result of a molecular mimicry. Although the glycoconjugate composition of human gastric epithelial cells is not known in detail it is proposed that repeating N-acetyllactosamine units of glycoconjugates may serve as bacterial attachment sites in the stomach.  相似文献   

13.
Mistletoe lectin I (ML-I) is a type II ribosome-inactivating protein, which inhibits the protein biosynthesis at the ribosomal level. ML-I is composed of a catalytically active A-chain with rRNA N-glycosidase activity and a B-chain with carbohydrate binding specificities. Using comparative solid-phase binding assays along with electrospray ionization tandem mass spectrometry, ML-I was shown to preferentially bind to terminally alpha2-6-sialylated neolacto series gangliosides from human granulocytes. IV(6)Neu5Ac-nLc4Cer, VI(6)Neu5Ac-nLc6Cer, and VIII(6)Neu5Ac-nLc8Cer were identified as ML-I receptors, whereas the isomeric alpha2-3-sialylated neolacto series gangliosides were not recognized. Only marginal binding of ML-I to terminal galactose residues of neutral glycosphingolipids with a Galbeta1-4Glc or Galbeta1-4GlcNAc sequence was determined, whereas a distal Galalpha1-4Gal, GalNAcbeta1-3Gal, or GalNAcbeta1-4Gal disaccharide did not bind at all. Among the glycoproteins investigated in Western blot and microwell adsorption assays, only those carrying Neu5Acalpha2-6Galbeta1-4GlcNAc residues, exclusively, predominantly, or even as less abundant constituents in an assembly with Neu5Acalpha2-3Galbeta1-4GlcNAc-terminated glycans, displayed high ML-I binding capacity. From our data we conclude that (i) ML-I has to be considered as a sialic acid- and not a galactose-specific lectin and (ii) neolacto series gangliosides and sialoglycoproteins with type II glycans, which share the Neu5Acalpha2-6Galbeta1-4GlcNAc terminus, are true ML-I receptors. This strict preference might help to explain the immunostimulatory potential of ML-I toward certain leukocyte subpopulations and its therapeutic success as a cytotoxic anticancer drug.  相似文献   

14.
Wu AM  Singh T  Wu JH  Lensch M  André S  Gabius HJ 《Glycobiology》2006,16(6):524-537
Cell-surface glycans are functional docking sites for tissue lectins such as the members of the galectin family. This interaction triggers a wide variety of responses; hence, there is a keen interest in defining its structural features. Toward this aim, we have used enzyme-linked lectinosorbent (ELLSA) and inhibition assays with the prototype rat galectin-5 and panels of free saccharides and glycoconjugates. Among 45 natural glycans tested for lectin binding, galectin-5 reacted best with glycoproteins (gps) presenting a high density of Galbeta1-3/4GlcNAc (I/II) and multiantennary N-glycans with II termini. Their reactivities, on a nanogram basis, were up to 4.3 x 10(2), 3.2 x 10(2), 2.5 x 10(2), and 1.7 x 10(4) times higher than monomeric Galbeta1-3/4GlcNAc (I/II), triantennary-II (Tri-II), and Gal, respectively. Galectin-5 also bound well to several blood group type B (Galalpha1-3Gal)- and A (GalNAcalpha1-3Gal)-containing gps. It reacted weakly or not at all with tumor-associated Tn (GalNAcalpha1-Ser/Thr) and sialylated gps. Among the mono-, di-, and oligosaccharides and mammalian glycoconjugates tested, blood group B-active II (Galalpha1-3Gal beta1-4GlcNAc), B-active IIbeta1-3L (Galalpha1-3Galbeta1-4GlcNAc beta1-3Galbeta1-4Glc), and Tri-II were the best. It is concluded that (1) Galbeta1-3/4GlcNAc and other Galbeta1-related oligosaccharides with alpha1-3 extensions are essential for binding, their polyvalent form in cellular glycoconjugates being a key recognition force for galectin-5; (2) the combining site of galectin-5 appears to be of a shallow-groove type sufficiently large to accommodate a substituted beta-galactoside, especially with alpha-anomeric extension at the non-reducing end (e.g., human blood group B-active II and B-active IIbeta1-3L); (3) the preference within beta-anomeric positioning is Galbeta1-4 > or = Galbeta1-3 > Galbeta1-6; and (4) hydrophobic interactions in the vicinity of the core galactose unit can enhance binding. These results are important for the systematic comparison of ligand selection in this family of adhesion/growth-regulatory effectors with potential for medical applications.  相似文献   

15.
We report that isomeric monofucosylhexasaccharides, Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4(Fucalpha1-3) GlcNAc, Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4 GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 GlcNAc, and bifucosylhexasaccharides Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAc, Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 (Fucalpha1-3)GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4( Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4GlcNAc can be isolated in pure form from reaction mixtures of the linear hexasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4GlcNAc with GDP-fucose and alpha1,3-fucosyltransferases of human milk. The pure isomers were characterized in several ways;1H-NMR spectroscopy, for instance, revealed distinct resonances associated with the Lewis x group [Galbeta1-4(Fucalpha1-3)GlcNAc] located at the proximal, middle, and distal positions of the polylactosamine chain. Chromatography on immobilized wheat germ agglutinin was crucial in the separation process used; the isomers carrying the fucose at the reducing end GlcNAc possessed particularly low affinities for the lectin. Isomeric monofucosyl derivatives of the pentasaccharides GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1- 4Gl cNAc and Galalpha1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4G lcN Ac and the tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc were also obtained in pure form, implying that the methods used are widely applicable. The isomeric Lewis x glycans proved to be recognized in highly variable binding modes by polylactosamine-metabolizing enzymes, e.g., the midchain beta1,6-GlcNAc transferase (Lepp?nen et al., Biochemistry, 36, 13729-13735, 1997).  相似文献   

16.
The structures of acidic glycosphingolipids in colon adenocarcinoma have been analyzed extensively using a number of conventional methods, such as thin-layer chromatography and methylation analysis, and a variety of acidic glycosphingolipids present in the tissues have been reported. However, because of a number of limitations in the techniques used in previous studies in terms of resolution, quantification, and sensitivity, we employed a different method that could be applied to small amounts of tissue. In this technique, the carbohydrate moieties of acidic glycosphingolipids from approximately 20mg of colon adenocarcinoma were released by endoglycoceramidase II and were labeled by pyridylamination. They were separated and structurally characterized by a two-dimensional HPLC mapping technique, electrospray ionization tandem mass spectrometry (ESI-MS/MS), and enzymatic cleavage. A total of 22 major acidic glycosphingolipid structures were identified, and their relative quantities were revealed in detail. They are composed of 1 sulfated (SM3), 1 lacto-series (SLe(a)), 6 kinds of ganglio-series, and 14 kinds of neolacto-series glycosphingolipids. They include most of the acidic glycosphingolipids previously reported to be present in the tissues and two previously unknown fucogangliosides sharing the same terminal structure: NeuAcalpha2-6(Fucalpha1-2)Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc, and NeuAcalpha2-6(Fucalpha1-2)Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3-Galbeta1-4Glc. Thus, this highly sensitive, high-resolution analysis enabled the identification of novel structures of acidic glycosphingolipids from small amounts of already comprehensively studied cancerous tissues. This method is a powerful tool for microanalysis of glycosphingolipid structures from small quantities of cancerous tissues and should be applicable to different types of malignant tissues.  相似文献   

17.
The binding of Helicobacter pylori to glycosphingolipids was examined by binding of (35)S-labeled bacteria to glycosphingolipids on thin-layer chromatograms. In addition to previously reported binding specificities, a selective binding to a non-acid tetraglycosylceramide of human meconium was found. This H. pylori binding glycosphingolipid was isolated and, on the basis of mass spectrometry, proton NMR spectroscopy, and degradation studies, were identified as Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer (lactotetraosylceramide). When using non-acid glycosphingolipid preparations from human gastric epithelial cells, an identical binding of H. pylori to the tetraglycosylceramide interval was obtained in one of seven samples. Evidence for the presence of lactotetraosylceramide in the binding-active interval was obtained by proton NMR spectroscopy of intact glycosphingolipids and by gas chromatography-electron ionization mass spectrometry of permethylated tetrasaccharides obtained by ceramide glycanase hydrolysis. The lactotetraosylceramide binding property was detected in 65 of 74 H. pylori isolates (88%). Binding of H. pylori to lactotetraosylceramide on thin-layer chromatograms was inhibited by preincubation with lactotetraose but not with lactose. Removal of the terminal galactose of lactotetraosylceramide by galactosidase hydrolysis abolished the binding as did hydrazinolysis of the acetamido group of the N-acetylglucosamine. Therefore, Galbeta3GlcNAc is an essential part of the binding epitope.  相似文献   

18.
The rare NOR erythrocytes, which are agglutinated by most human sera, contain unique glycosphingolipids (globoside elongation products) terminating with the sequence Galalpha1-4GalNAcbeta1-3Gal- recognized by common natural human antibodies. Anti-NOR antibodies were isolated from several human sera by affinity procedures, and their specificity was tested by inhibition of antibody binding to NOR-tri-polyacrylamide (PAA) conjugate (ELISA) by the synthetic oligosaccharides, Galalpha1-4GalNAcbeta1-3Gal (NOR-tri), Galalpha1-4GalNAc (NOR-di), Galalpha1-4Galbeta1-3Galbeta1-4Glc ((Gal)3Glc), and Galalpha1-4Gal (P1-di). Two major types of subspecificity of anti-NOR antibodies were found. Type 1 antibodies were found to react strongly with (Gal)3Glc and NOR-tri and weakly with P1-di and NOR-di, which indicated specificity for the trisaccharide epitope Galalpha1-4Gal/GalNAcbeta1-3Gal. Type 2 antibodies were specific to Galalpha1-4GalNAc, because they were inhibited most strongly by NOR-tri and NOR-di and were not (or very weakly) inhibited by (Gal)3Glc and P1-di. Monoclonal anti-NOR antibodies were obtained by immunizing mice with NOR-tri-human serum albumin (HSA) conjugate and were found to have type 2 specificity. All anti-NOR antibodies reacted specifically with NOR glycolipids on thin-layer plates. The cross-reactivity of type 1 anti-NOR antibodies with Galalpha1-4Gal drew attention to a possible antigenic relationship between NOR and blood group P system glycolipids. The latter glycolipids include Pk (Galalpha1-4Galbeta1-4Glc-Cer) present in all normal erythrocytes and P1 (Galalpha1-4Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-Cer) present only in P1 erythrocytes. Sera of some P2 (P1-negative) persons contain natural anti-P1 antibodies. This prompted us to test the specificity of anti-P1 antibodies. Natural human anti-P1 isolated from serum of P2 individual and mouse monoclonal anti-P1 were best inhibited by Galalpha1-4Galbeta1-4GlcNAc (P1-tri) and did not react with NOR-tri and NOR-di. Monoclonal anti-P1 bound to Pk and P1 glycolipids and not to NOR glycolipids. These results indicated an entirely different specificity of anti-NOR and anti-P1 antibodies. Human serum samples differed in the content of anti-alpha-galactosyl antibodies, including both types of anti-NOR. In the sera of some individuals, type 1 or type 2 anti-NOR antibodies dominated, and other samples contained mixtures of both types of anti-NOR. The biological significance of these new abundant anti-alpha-galactosyl antibodies still awaits elucidation.  相似文献   

19.
A galactose specific lectin was isolated from the seeds of Ficus bengalensis (Moraceae) fruits and designated as F. bengalensis agglutinin (FBA). The lectin was purified by affinity repulsion chromatography on fetuin-agarose and was a monomer of molecular mass 33kDa. Like other Moraceae family lectins, carbohydrate-binding activity of FBA was independent of any divalent cation. FBA did not bind with simple saccharides, however sugar ligands with aromatic aglycons showed pronounced binding. The combining site of FBA recognized preferably Galbeta1,4GlcNAcbeta1-(II) followed by Galbeta1,3GalNAcalpha1-(Talpha) containing glycotopes. Interaction with saccharides revealed that the combining site of FBA could well accommodate a tetrasaccharide, asialo GM1 glycan (Galbeta1,3GalNAcbeta1,4Galbeta1,4Glcbeta1-), whereas polyvalent Tn (GalNAcalpha1-Ser/Thr), one of the well-recognized ligands of Moraceae family lectin, did not interact well with FBA.  相似文献   

20.
Meyer S  Tefsen B  Imberty A  Geyer R  van Die I 《Glycobiology》2007,17(10):1104-1119
Recognition of pathogen-derived carbohydrate constituents by antigen presenting cells is an important step in the induction of protective immunity. Here we investigated the interaction of L-SIGN (liver/lymph node specific ICAM-3-grabbing nonintegrin), a C-type lectin that functions as antigen receptor on human liver sinusoidal endothelial cells, with egg-derived glycan antigens of the parasitic trematode Schistosoma mansoni. Our data demonstrate that L-SIGN binds both schistosomal soluble egg antigens (SEA) and egg glycosphingolipids, and can mediate internalization of SEA by L-SIGN expressing cells. Binding and internalization of SEA was strongly reduced after treatment of SEA with endoglycosidase H, whereas defucosylation affected neither binding nor internalization. These data indicate that L-SIGN predominantly interacts with oligomannosidic N-glycans of SEA. In contrast, binding to egg glycosphingolipids was completely abolished after defucosylation. Our data show that L-SIGN binds to a glycosphingolipid fraction containing fucosylated species with compositions of Hex(1)HexNAc(5-7)dHex(3-6)Cer, as evidenced by mass spectrometry. The L-SIGN "gain of function" mutant Ser363Val, which binds fucosylated Lewis antigens, did not bind to this fucosylated egg glycosphingolipid fraction, suggesting that L-SIGN displays different modes in binding fucoses of egg glycosphingolipids and Lewis antigens, respectively. Molecular modeling studies indicate that the preferred binding mode of L-SIGN to the respective fucosylated egg glycosphingolipid oligosaccharides involves a Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc tetrasaccharide at the nonreducing end. In conclusion, our data indicate that L-SIGN recognizes both oligomannosidic N-glycans and multiply fucosylated carbohydrate motifs within Schistosoma egg antigens, which demonstrates that L-SIGN has a broad but specific glycan recognition profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号