首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of LRRK2 kinase activity with small molecules has emerged as a potential novel therapeutic treatment for Parkinson’s disease. Herein we disclose the discovery of a 4-ethoxy-7H-pyrrolo[2,3-d]pyrimidin-2-amine series as potent LRRK2 inhibitors identified through a kinase-focused set screening. Optimization of the physicochemical properties and kinase selectivity led to the discovery of compound 7, which exhibited potent in vitro inhibition of LRRK2 kinase activity, good physicochemical properties and kinase selectivity across the kinome. Moreover, compound 7 was able to penetrate into the CNS, and in vivo pharmacology studies revealed significant inhibition of Ser935 phosphorylation in the brain of both rats (30 and 100?mg/kg) and mice (45?mg/kg) following oral administration.  相似文献   

2.
Mutations in PARK8/LRRK2 are the most common genetic cause of Parkinson’s disease. Inhibition of LRRK2 kinase activity has neuroprotective benefits, and provides a means of addressing the underlying biochemical cause of Parkinson’s disease for the first time. Initial attempts to develop LRRK2 inhibitors were largely unsuccessful and highlight shortcomings intrinsic to traditional, high throughput screening methods of lead discovery. Recently, amino-pyrimidine GNE-7915 was reported as a potent (IC50 = 9 nM) selective (1/187 kinases), brain-penetrant and non-toxic inhibitor of LRRK2. The use of in silico modelling, extensive in vitro assays and resource-efficient in vivo techniques to produce GNE-7915, reflects a trend towards the concerted optimisation of potency, selectivity and pharmacokinetic properties in early-stage drug development.  相似文献   

3.
We describe the discovery and optimization of 5-substituted-N-pyridazinylbenzamide derivatives as potent and selective LRRK2 inhibitors. Extensive SAR studies led to the identification of compounds 18 and 23, which demonstrated good in vitro pharmacokinetic profile and excellent selectivity over 140 other kinases. Both compounds demonstrated high unbound fractions in both blood and brain. Compound 18 proved to be brain penetrant, and the high unbound fraction of compound 18 in brain enabled its in vivo efficacy in CNS, wherein a significant inhibition of LRRK2 Ser935 phosphorylation was observed in rat brain following intravenous infusion at 5?mg/kg/h.  相似文献   

4.
The most prevalent leucine-rich repeat kinase 2 (LRRK2) mutation G2019S is associated with Parkinson’s disease (PD). It enhances kinase activity and has been identified in both familial and sporadic cases. Kinase activity was reported to be required for LRRK2 mutants to exert their toxic effects. Hence LRRK2 kinase inhibition may be a promising therapeutic target for PD. Here we report on the discovery and characterization of indolinone based LRRK2 inhibitors. Indolinone 15b, the most potent and selective inhibitor of the present series, is characterized by an IC50 of 15 nM against wild-type LRRK2 and 10 nM against the LRRK2 G2019S mutant, respectively. Compound 15b was further evaluated in a kinase panel including 46 human protein kinases and in a zebrafish embryo phenotype assay, which enabled toxicity determination in whole organisms.  相似文献   

5.
Mutations within the LRRK2 (leucine-rich repeat kinase 2) gene predispose humans to develop late-onset Parkinson’s disease (PD). The most prevalent of these mutations, G2019S, has been shown to increase LRRK2 kinase activity. Therefore, the discovery of small molecule inhibitors of LRRK2(G2019S) through high-throughput screening (HTS) may provide a novel therapeutic strategy for treating PD. Current biochemical assays monitoring the activity of LRRK2(G2019S) either are radioactive or use short peptidic substrates. Here we describe the development and optimization of a novel HTS AlphaScreen assay for measuring the catalytic activity of full-length LRRK2(G2019S) using its putative physiological protein substrate moesin. The high sensitivity of this optimized 384-well assay allowed the use of enzyme concentrations as low as 0.75 nM. The estimated apparent Km value for adenosine triphosphate (6 μM) using the glutathione S-transferase-moesin substrate was much lower than the one previously reported using LRRKtide, a synthetic peptide derived from moesin. Testing of nonselective kinase inhibitors (staurosporine, H-1152, and Y-27632) generated potencies consistent with published data. Finally, robotic validation of the assay yielded an average Z′ factor of 0.80. Overall, these results indicate that the present HTS AlphaScreen assay might provide a more relevant biochemical approach for the discovery of novel LRRK2(G2019S) inhibitors.  相似文献   

6.
Leucine-rich repeat kinase 2 (LRRK2) has attracted considerable interest as a therapeutic target for the treatment of Parkinson’s disease. Compounds derived from a 2-aminopyridine screening hit were optimised using a LRRK2 homology model based on mixed lineage kinase 1 (MLK1), such that a 2-aminopyridine-based lead molecule 45, with in vivo activity, was identified.  相似文献   

7.
Parkinson’s disease (PD) is a late-onset neurodegenerative disease which occurs at more than 1% in populations aging 65-years and over. Recently, leucine-rich repeat kinase 2 (LRRK2) has been identified as a causative gene for autosomal dominantly inherited familial PD cases. LRRK2 G2019S which is a prevalent mutant found in familial PD patients with LRRK2 mutations, exhibited kinase activity stronger than that of the wild type, suggesting the LRRK2 kinase inhibitor as a potential PD therapeutics. To develop such therapeutics, we initially screened a small chemical library and selected compound 1, whose IC50 is about 13.2 μM. To develop better inhibitors, we tested five of the compound 1 derivatives and found a slightly better inhibitor, compound 4, whose IC50 is 4.1 μM. The cell-based assay showed that these two chemicals inhibited oxidative stress-induced neurotoxicity caused by over-expression of a PD-specific LRRK2 mutant, G2019S. In addition, the structural analysis of compound 4 suggested hydrogen bond interactions between compound 4 and Ala 1950 residue in the backbone of the ATP binding pocket of LRRK2 kinas domain. Therefore, compound 4 may be a promising lead compound to further develop a PD therapeutics based on LRRK2 kinase inhibition.  相似文献   

8.
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson’s disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of [1,2,4]triazolo[4,3-b]pyridazines that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays and show an unprecedented selectivity towards the G2019S mutant. A structural rational for the observed selectivity is proposed.  相似文献   

9.
Dominant missense mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known genetic cause of Parkinson disease. LRRK2 encodes a serine/threonine protein kinase, and pathogenic mutations may increase kinase activity. Intrinsic GTP binding in the GTPase domain may govern kinase activity through an internal signal transduction cascade. As with many protein kinases, LRRK2 self-interacts through mechanisms that may regulate enzymatic activity. We find that the disruption of either GTPase or kinase activity enhances the formation of high molecular weight oligomers and prevents the formation of LRRK2 dimer structures. In addition, brief application of the broad spectrum kinase inhibitor staurosporine ablates LRRK2 dimers and promotes LRRK2 high molecular weight oligomers. LRRK2 interactions with other proteins in cell lines are kinase-independent and include chaperones and cell cytoskeleton components, suggesting that LRRK2 self-assembly principally dictates complex size. To further explore the mechanics of kinase activation, we separate soluble LRRK2 protein that encodes the pathogenic G2019S mutation into high molecular weight oligomers, dimers, and monomers and find that kinase activity resides with dimeric LRRK2. Some PD-associated mutations that increase kinase activity in vitro significantly increase the proportion of dimer structures relative to total LRRK2 protein, providing additional insight into how pathogenic mutations may alter normal enzymatic regulation. Targeting and tracking LRRK2 dimerization may provide a clear way to observe LRRK2 kinase activity in living cells, and disruption of dimeric LRRK2 through kinase inhibition or other means may attenuate pathogenic increases in LRRK2 enzymatic output.  相似文献   

10.

Background

Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of familial and sporadic Parkinson''s disease. The multidomain protein LRRK2 exhibits overall low GTPase and kinase activity in vitro.

Methodology/Principal Findings

Here, we show that the rho guanine nucleotide exchange factor ARHGEF7 and the small GTPase CDC42 are interacting with LRRK2 in vitro and in vivo. GTPase activity of full-length LRRK2 increases in the presence of recombinant ARHGEF7. Interestingly, LRRK2 phosphorylates ARHGEF7 in vitro at previously unknown phosphorylation sites. We provide evidence that ARHGEF7 might act as a guanine nucleotide exchange factor for LRRK2 and that R1441C mutant LRRK2 with reduced GTP hydrolysis activity also shows reduced binding to ARHGEF7.

Conclusions/Significance

Downstream effects of phosphorylation of ARHGEF7 through LRRK2 could be (i) a feedback control mechanism for LRRK2 activity as well as (ii) an impact of LRRK2 on actin cytoskeleton regulation. A newly identified familial mutation N1437S, localized within the GTPase domain of LRRK2, further underlines the importance of the GTPase domain of LRRK2 in Parkinson''s disease pathogenesis.  相似文献   

11.
12.
《Genomics》2022,114(1):316-327
Leucine-rich repeat kinase2 (LRRK2) influences the host immune responses and correlates with the pathogenesis of inflammation, cancer as well as Parkinson’ Disease. Herein, we explored the oncogenic role of LRRK2 at pan-cancer level and validated the analysis by single cell RNA-sequencing and in-vitro experiments. As a result, LRRK2 significantly correlated with the survival events. Specifically, LRRK2 increased the risk of Low-Grade Glioma whereas improved the survival probability of patients with Skin Cutaneous Melanoma. Gene set enrichment analysis demonstrated the involvement of LRRK2 in the host immune responses. Within the tumor microenvironment, LRRK2 was positively associated with the recruitment of macrophages. Furthermore, scRNA-seq and co-culture experiments demonstrated that LRRK2 deficiency impaired macrophage functions, and influenced the neoplastic progression in a cancer type-specific manner. Therefore, the present study provided a therapeutic strategy for LGG based on the interference with LRRK2 expression and activity to prevent macrophage recruitment and promote tumor eradication.  相似文献   

13.

Background

Parkinson's disease (PD) is the most prevalent incurable neurodegenerative movement disorder. Mutations in LRRK2 are associated with both autosomal dominant familial and sporadic forms of PD. LRRK2 encodes a large putative serine/threonine kinase with GTPase activity. Increased LRRK2 kinase activity plays a critical role in pathogenic LRRK2 mutant-induced neurodegeneration in vitro. Little is known about the physiological function of LRRK2.

Results

We have recently identified a Drosophila line with a P-element insertion in an ortholog gene of human LRRK2 (dLRRK). The insertion results in a truncated Drosophila LRRK variant with N-terminal 1290 amino acids but lacking C-terminal kinase domain. The homozygous mutant fly develops normally with normal life span as well as unchanged number and pattern of dopaminergic neurons. However, dLRRK mutant flies were selectively sensitive to hydrogen peroxide induced stress but not to paraquat, rotenone and β-mercaptoethanol induced stresses.

Conclusion

Our results indicate that inactivation of dLRRK kinase activity is not essential for fly development and suggest that inhibition of LRRK activity may serve as a potential treatment of PD. However, dLRRK kinase activity likely plays a role in protecting against oxidative stress.  相似文献   

14.
Leucine Rich Repeat Kinase 2 (LRRK2) is a 2527 amino acid member of the ROCO family of proteins, possessing a complex, multidomain structure including a GTPase domain (termed ROC, for Ras of Complex proteins) and a kinase domain1. The discovery in 2004 of mutations in LRRK2 that cause Parkinson''s disease (PD) resulted in LRRK2 being the focus of a huge volume of research into its normal function and how the protein goes awry in the disease state2,3. Initial investigations into the function of LRRK2 focused on its enzymatic activities4-6. Although a clear picture has yet to emerge of a consistent alteration in these due to mutations, data from a number of groups has highlighted the importance of the kinase activity of LRRK2 in cell death linked to mutations7,8. Recent publications have reported inhibitors targeting the kinase activity of LRRK2, providing a key experimental tool9-11. In light of these data, it is likely that the enzymatic properties of LRRK2 afford us an important window into the biology of this protein, although whether they are potential drug targets for Parkinson''s is open to debate.A number of different approaches have been used to assay the kinase activity of LRRK2. Initially, assays were carried out using epitope tagged protein overexpressed in mammalian cell lines and immunoprecipitated, with the assays carried out using this protein immobilised on agarose beads4,5,7. Subsequently, purified recombinant fragments of LRRK2 in solution have also been used, for example a GST tagged fragment purified from insect cells containing residues 970 to 2527 of LRRK212. Recently, Daniëls et al. reported the isolation of full length LRRK2 in solution from human embryonic kidney cells, however this protein is not widely available13. In contrast, the GST fusion truncated form of LRRK2 is commercially available (from Invitrogen, see table 1 for details), and provides a convenient tool for demonstrating an assay for LRRK2 kinase activity. Several different outputs for LRRK2 kinase activity have been reported. Autophosphorylation of LRRK2 itself, phosphorylation of Myelin Basic Protein (MBP) as a generic kinase substrate and phosphorylation of an artificial substrate - dubbed LRRKtide, based upon phosphorylation of threonine 558 in Moesin - have all been used, as have a series of putative physiological substrates including α-synuclein, Moesin and 4-EBP14-17. The status of these proteins as substrates for LRRK2 remains unclear, and as such the protocol described below will focus on using MBP as a generic substrate, noting the utility of this system to assay LRRK2 kinase activity directed against a range of potential substrates.  相似文献   

15.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of autosomal dominant familial Parkinson''s disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase enzymatic domains. Disease-associated mutations in LRRK2 variably influence enzymatic activity with the common G2019S variant leading to enhanced kinase activity. Mutant LRRK2 induces neuronal toxicity through a kinase-dependent mechanism suggesting that kinase activity is important for mediating the pathogenic effects of LRRK2 mutations. A number of LRRK2 kinase substrates have been identified in vitro but whether they represent authentic physiological substrates in mammalian cells or tissues is not yet clear. The eukaryotic initiation factor 4E (eIF4E)-binding protein, 4E-BP1, was recently identified as a potential substrate of LRRK2 kinase activity in vitro and in Drosophila with phosphorylation occurring at Thr37 and Thr46. Here, we explore a potential interaction of LRRK2 and 4E-BP1 in mammalian cells and brain. We find that LRRK2 can weakly phosphorylate 4E-BP1 in vitro but LRRK2 overexpression is not able to alter endogenous 4E-BP1 phosphorylation in mammalian cells. In mammalian neurons LRRK2 and 4E-BP1 display minimal co-localization, whereas the subcellular distribution, protein complex formation and covalent post-translational modification of endogenous 4E-BP1 are not altered in the brains of LRRK2 knockout or mutant LRRK2 transgenic mice. In the brain, the phosphorylation of 4E-BP1 at Thr37 and Thr46 does not change in LRRK2 knockout or mutant LRRK2 transgenic mice, nor is 4E-BP1 phosphorylation altered in idiopathic or G2019S mutant PD brains. Collectively, our results suggest that 4E-BP1 is neither a major nor robust physiological substrate of LRRK2 in mammalian cells or brain.  相似文献   

16.
Li X  Wang QJ  Pan N  Lee S  Zhao Y  Chait BT  Yue Z 《PloS one》2011,6(3):e17153

Background

Recent studies show that mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are the cause of the most common inherited and some sporadic forms of Parkinson''s disease (PD). The molecular mechanism underlying the pathogenic role of LRRK2 mutations in PD remains unknown.

Methodology/Principal Findings

Using affinity purification and mass spectrometric analysis, we investigated phosphorylation sites and binding proteins of LRRK2 purified from mouse brain. We identified multiple phosphorylation sites at N-terminus of LRRK2 including S910, S912, S935 and S973. Focusing on the high stoichiometry S935 phosphorylation site, we developed an anti-pS935 specific antibody and showed that LRRK2 is constitutively phosphorylated at S935 in various tissues (including brain) and at different ages in mice. We find that 14-3-3 proteins (especially isoforms γ and η) bind LRRK2 and this binding depends on phosphorylation of S935. The binding of 14-3-3, with little effect on dimer formation of LRRK2, confers protection of the phosphorylation status of S935. Furthermore, we show that protein kinase A (PKA), but not LRRK2 kinase itself, can cause the phosphorylation of LRRK2 at S935 in vitro and in cell culture, suggesting that PKA is a potential upstream kinase that regulates LRRK2 function. Finally, our study indicates that the common PD-related mutations of LRRK2, R1441G, Y1699C and G2019S, decrease homeostatic phosphorylation levels of S935 and impair 14-3-3 binding of LRRK2.

Conclusions/Significance

LRRK2 is extensively phosphorylated in vivo, and the phosphorylation of specific sites (e.g. S935) determines 14-3-3 binding of LRRK2. We propose that 14-3-3 is an important regulator of LRRK2-mediated cellular functions. Our study suggests that PKA, a cAMP-dependent kinase involved in regulating dopamine physiology, is a potential upstream kinase that phosphorylates LRRK2 at S935. Furthermore, the reduction of phosphorylation/14-3-3 binding of LRRK2 due to the common familial PD-related mutations provides novel insight into the pathogenic mechanism of LRRK2-linked PD.  相似文献   

17.

Background

Mutations in LRRK2 gene represent the most common known genetic cause of Parkinson''s disease (PD).

Methodology/Principal Findings

We used metabolomic profiling to identify biomarkers that are associated with idiopathic and LRRK2 PD. We compared plasma metabolomic profiles of patients with PD due to the G2019S LRRK2 mutation, to asymptomatic family members of these patients either with or without G2019S LRRK2 mutations, and to patients with idiopathic PD, as well as non-related control subjects. We found that metabolomic profiles of both idiopathic PD and LRRK2 PD subjects were clearly separated from controls. LRRK2 PD patients had metabolomic profiles distinguishable from those with idiopathic PD, and the profiles could predict whether the PD was secondary to LRRK2 mutations or idiopathic. Metabolomic profiles of LRRK2 PD patients were well separated from their family members, but there was a slight overlap between family members with and without LRRK2 mutations. Both LRRK2 and idiopathic PD patients showed significantly reduced uric acid levels. We also found a significant decrease in levels of hypoxanthine and in the ratios of major metabolites of the purine pathway in plasma of PD patients.

Conclusions/Significance

These findings show that LRRK2 patients with the G2019S mutation have unique metabolomic profiles that distinguish them from patients with idiopathic PD. Furthermore, asymptomatic LRRK2 carriers can be separated from gene negative family members, which raises the possibility that metabolomic profiles could be useful in predicting which LRRK2 carriers will eventually develop PD. The results also suggest that there are aberrations in the purine pathway in PD which may occur upstream from uric acid.  相似文献   

18.
2-Aminopyrimidin-4(1H)-one was proposed as the novel bioisostere of urea. Bioisosteric replacement of the reported urea series of the CXCR2 antagonists with 2-aminopyrimidin-4(1H)-ones led to the discovery of the novel and potent CXCR2 antagonist 3e. 2-Aminopyrimidin-4(1H)-one derivative 3e demonstrated a good developability profile (reasonable solubility and high permeability) and superior chemical stability especially in simulated gastric fluid (SGF) compared with ureas.  相似文献   

19.
Leucine-rich repeat kinase 2 (LRRK2) has been identified as the causal gene for autosomal dominant familial Parkinson’s disease (PD), although the mechanism of neurodegeneration involving the mutant LRRK2 molecules remains unknown. In the present study, we found that the protein level of transfected I2020T mutant LRRK2 was significantly lower than that of wild-type and G2019S mutant LRRK2, although the intracellular localization of the I2020T and wild-type molecules did not differ. Pulse-chase experiments proved that the I2020T LRRK2 molecule has a higher degradation rate than wild-type or G2019S LRRK2. Upon addition of proteasome and lysosome inhibitors, the protein level of I2020T mutant LRRK2 reached that of the wild-type. These results indicate that I2020T mutant LRRK2 is more susceptible to post-translational degradation than the wild-type molecule. Our results indicate a novel molecular feature characteristic to I2020T LRRK2, and provide a new insight into the mechanism of neurodegeneration caused by LRRK2.  相似文献   

20.
Leucine-rich repeat kinase-2 (LRRK2), a cytoplasmic protein containing both GTP binding and kinase activities, has emerged as a highly promising drug target for Parkinson’s disease (PD). The majority of PD-linked mutations in LRRK2 dysregulate its GTP binding and kinase activities, which may contribute to neurodegeneration. While most known LRRK2 inhibitors are developed to target the kinase domain, we have recently identified the first LRRK2 GTP binding inhibitor, 68, which not only inhibits LRRK2 GTP binding and kinase activities with high potency in vitro, but also reduces neurodegeneration. However, the in vivo effects of 68 are low due to its limited brain penetration. To address this problem, we reported herein the design and synthesis of a novel analog of 68, FX2149, aimed at increasing the in vivo efficacy. Pharmacological characterization of FX2149 exhibited inhibition of LRRK2 GTP binding activity by ~90% at a concentration of 10 nM using in vitro assays. Furthermore, FX2149 protected against mutant LRRK2-induced neurodegeneration in SH-SY5Y cells at 50-200 nM concentrations. Importantly, FX2149 at 10 mg/kg (i.p.) showed significant brain inhibition efficacy equivalent to that of 68 at 20 mg/kg (i.p.), determined by mouse brain LRRK2 GTP binding and phosphorylation assays. Furthermore, FX2149 at 10 mg/kg (i.p.) attenuated lipopolysaccharide (LPS)-induced microglia activation and LRRK2 upregulation in a mouse neuroinflammation model comparable to 68 at 20 mg/kg (i.p.). Our results highlight a novel GTP binding inhibitor with better brain efficacy, which represents a new lead compound for further understanding PD pathogenesis and therapeutic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号