首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering the entire life history of a species is fundamental to developing effective conservation strategies. Decreasing populations of five-needle white pines may be leading to the decline of Clark’s nutcrackers (Nucifraga columbiana). These birds are important seed dispersers for at least ten conifer species in the western U.S., including whitebark pine (Pinus albicaulis), an obligate mutualist of Clark’s nutcrackers. For effective conservation of both Clark’s nutcrackers and whitebark pine, it is essential to ensure stability of Clark’s nutcracker populations. My objectives were to examine Clark’s nutcracker breeding season home range size, territoriality, habitat selection, and foraging behavior in the southern Greater Yellowstone Ecosystem, a region where whitebark pine is declining. I radio-tracked Clark’s nutcrackers in 2011, a population-wide nonbreeding year following a low whitebark pine cone crop, and 2012, a breeding year following a high cone crop. Results suggest Douglas-fir (Pseudotsuga menziesii) communities are important habitat for Clark’s nutcrackers because they selected it for home ranges. In contrast, they did not select whitebark pine habitat. However, Clark’s nutcrackers did adjust their use of whitebark pine habitat between years, suggesting that, in some springs, whitebark pine habitat may be used more than previously expected. Newly extracted Douglas-fir seeds were an important food source both years. On the other hand, cached seeds made up a relatively lower proportion of the diet in 2011, suggesting cached seeds are not a reliable spring food source. Land managers focus on restoring whitebark pine habitat with the assumption that Clark’s nutcrackers will be available to continue seed dispersal. In the Greater Yellowstone Ecosystem, Clark’s nutcracker populations may be more likely to be retained year-round when whitebark pine restoration efforts are located adjacent to Douglas-fir habitat. By extrapolation, whitebark pine restoration efforts in other regions may consider prioritizing restoration of whitebark pine stands near alternative seed sources.  相似文献   

2.
The importance of infrequent events for both adaptive evolution and the evolution of species interactions is largely unknown. We investigated how the infrequent production of large seed crops (masting) of a bird-dispersed tree (whitebark pine, Pinus albicaulis) influenced phenotypic selection exerted by its primary avian seed predator-disperser, the Clark's nutcracker (Nucifraga columbiana). Selection was not evident during common years of low seed abundance, whereas it was replicated among areas and favoured traits facilitating seed dispersal during infrequent years of high seed abundance. Since nutcrackers act mostly as seed predators during small seed crops but as seed dispersers during the largest seed crops, trees experienced strong selection from nutcrackers only during infrequent years when the interaction was most strongly mutualistic. Infrequent events can thus be essential to both adaptive evolution and the evolutionary dynamics of species interactions.  相似文献   

3.
This study examined the interrelationships of the fall seed-foraging guild with Korean pine (Pinus koraiensis) and its regeneration. The study took place in old-growth and secondary-growth forests in Northeastern China. Foraging behavior, seed transportation distance, and cache location of various birds and mammals were observed. Regeneration characteristics of Korean pine were also analyzed using plots in various vegetation cover types, successional stages, and topographical situations. Ten species of vertebrates were able to harvest seed from the closed-cone Korean pine. Of these, the Eurasian nutcracker, Eurasian nuthatch, red squirrel, and Siberian chipmunk were found to be potential seed dispersal agents. The nutcracker was the most important dispersal agent, easily acquiring seed with its large pointed bill, carrying up to 62 seeds in one trip, carrying seed at least 4 km, and placing seed in a variety of sites 2.5–3 cm deep in the soil. The Eurasian nuthatch carried a single seed per trip at distances less than 50 m, needed nutcrackers to open the cones and expose seed before they could acquire seed, and occasionally cached seed in the soil. Red squirrels were uncommon visitors to the tree tops of Korean pine, carried cones shorter distances than nutcrackers, and were only found under forest canopies. Human harvest of cones by knocking off branches also affected squirrel behavior and reduced future cone crops. Siberian chipmunks also collected seed from cones in trees and appeared to transport seed less than 50 m. Six other species were observed in this study successfully harvesting seed from cones but were not potential seed dispersers. Natural seedling establishment was found to be over 1000 seedlings/ha except on old-growth pine-hardwood sites. Squirrels were commonest here, but few seedlings survived past the 2nd year due to the intense shading. Second-growth forest types, including aPicea plantation where nutcrackers cached seed daily, and an old-growth pine-hardwood selective-harvest site, had the greatest regeneration. In conclusion, most natural regeneration of Korean pine in this part of its range is due primarily to the Eurasian nutcracker. Nutcrackers can aid forest managers in reaching desired stocking levels after disturbance, as well as a more natural-appearing forest. Squirrels, chipmunks, and nuthatches are minor seedling establishment agents. Korean pine seed is an important food source used by at least 22 species of forest wildlife.  相似文献   

4.
Clark's nutcrackers, Nucifraga columbiana, accurately v recover thousands of caches per year in the field. Previous experiments have confirmed that these birds possess excellent, long-lasting spatial-memory capabilities. We tested whether resistance to interference is one of the features of nutcracker spatial memory. Experiment 1 tested retroactive interference. Nutcrackers showed no decrease in accuracy overall but performed relatively poorly in their final recovery session. Interference is unlikely to have caused these sites to be poorly remembered because they had fewer neighbouring cache sites than better-remembered sites. Experiment 2 tested for proactive interference. Interference would have caused the experimental birds to be less accurate than control birds. Instead then were slightly more accurate. In experiment 3, nutcrackers were allowed to repeatedly view their cache sites from a cage between caching and recovery. Nutcrackers were less accurate when recovering from cache sites they had viewed. This effect may be due to changes in motivation. Order of caching had no effect on accuracy but nutcrackers were more accurate when recovering caches from central than from peripheral areas of experimental rooms. In summary, these experiments provide further evidence of the remarkable spatial-memory abilities of Clark's nutcrackers and demonstrate that these birds are highly resistant to interference effects on spatial memory. Comparative tests will be needed to test if specialized food storers are exceptionally resistant to interference in spatial memory.  相似文献   

5.
We used allozyme analysis to examine family structure, the spatial patterning of related individuals, in two populations of whitebark pine (Pinus albicaulis), a subalpine conifer that commonly displays a multistem form. The individual stems within clumps are genetically distinct individuals, having arisen from separate seeds. Individuals within a clump are genetically more similar than individuals in different clumps, but individuals in neighboring clumps do not appear to be more similar than individuals in distant clumps. This family structure appears to be a direct result of the seed-caching behavior of Clark's nutcrackers (Nucifraga columbiana), the primary dispersal agent for whitebark pine seeds.  相似文献   

6.
Summary The influences of Colorado pinyon pine (Pinus edulis) cone crop size, cone and seed weight, cone length, number of seeds per cone, number of viable seeds, and percent viable seeds on the foraging behavior of avian seed dispersal agents were examined in field and laboratory settings. In the field, there was a significant positive relationship between cone number per tree and both the absolute number of cones and the percentage of the cone crop from which seeds were harvested. Cone weight and the number of viable seeds were also significantly related to seed harvest intensity. Laboratory experiments examined the relationship between crop size and cone characters on seed harvest by 18 Clark's Nutcrackers (Nucifraga columbiana). Nutcrackers were offered a choice of two tree types: one with 20 cones attached, and another with 10 cones attached. Significantly more birds chose to remove seeds first from the tree with 20 cones than the tree with 10 cones. In timed trials, they also harvested seeds from significantly more cones on the tree with the higher cone density. In the laboratory, cones chosen for seed removal by the nutcrackers had significantly more viable seeds, more seeds, and were longer compared to cones that were not chosen. Such discriminatory foraging behavior may increase avian foraging efficiency and result in differential reproductive success of pinyon pines. This behavior may therefore influence the evolution of pinyon pine reproductive traits.  相似文献   

7.
The raw material for evolution is variation. Consequently, identifying the factors that generate, maintain, and erode phenotypic and genetic variation in ecologically important traits within and among populations is important. Although persistent directional or stabilizing selection can deplete variation, spatial variation in conflicting directional selection can enhance variation. Here, we present evidence that phenotypic variation in limber pine (Pinus flexilis) cone structure is enhanced by conflicting selection pressures exerted by its mutualistic seed disperser (Clark's nutcracker Nucifraga columbiana) and an antagonistic seed predator (pine squirrel Tamiasciurus spp.). Phenotypic variation in cone structure was bimodal and about two times greater where both agents of selection co‐occurred than where one (the seed predator) was absent. Within the region where both agents of selection co‐occurred, bimodality in cone structure was pronounced where there appears to be a mosaic of habitats with some persistent habitats supporting only the seed disperser. These results indicate that conflicting selection stemming from spatial variation in community diversity can enhance phenotypic variation in ecologically important traits.  相似文献   

8.
Five hypotheses of cache recovery behaviour in Clark's nutcracker (Nucifraga columbiana) were examined experimentally. Most caches were made in soil within 5 cm of conspicuous large objects. Both seed-caching and non-seed-caching nutcrackers were able to locate caches. Seed-caching nutcrackers relocated caches using large objects as remembered visual cues. Soil microtopography and small (<2 cm diameter) objects may be used as cues to facilitate cache recovery but are not essential. Non-seed-caching nutcrackers located caches by using soil disturbances at cache sites as visual cues and by searching preferentially near objects where caches were concentrated. Success rates of seed-caching nutcrackers ranged from 52 to 78% and those of non-seed-caching nutcrackers ranged from 8 to 12%. Nutcrackers do not use random search or olfactory cues to locate caches.  相似文献   

9.
The genetic impact of barriers and Pleistocene glaciations on high latitude resident species has not been widely investigated. The Clark’s nutcracker is an endemic North American corvid closely associated with Pinus-dominated forests. The nutcracker’s encompasses known barriers to dispersal for other species, and glaciated and unglaciated areas. Clark’s nutcrackers also irruptively disperse long distances in search of pine seed crops, creating the potential for gene flow among populations. Using the highly variable mitochondrial DNA control region, seven microsatellite loci, and species distribution modeling, we examined the effects of glaciations and dispersal barriers on population genetic patterns and population structure of nutcrackers. We sequenced 900 bp of mitochondrial control region for 169 individuals from 15 populations and analysed seven polymorphic microsatellite loci for 13 populations across the Clark’s nutcracker range. We used species distribution modeling and a range of phylogeographic analyses to examine evolutionary history. Clark’s nutcracker populations are not highly differentiated throughout their range, suggesting high levels of gene flow among populations, though we did find some evidence of isolation by distance and peripheral isolation. Our analyses suggested expansion from a single refugium after the last glacial maximum, but patterns of genetic diversity and paleodistribution modeling of suitable habitat were inconclusive as to the location of this refugium. Potential barriers to dispersal (e.g. mountain ranges) do not appear to restrict gene flow in Clark’s nutcracker, and postglacial expansion likely occurred quickly from a single refugium located south of the ice sheets.  相似文献   

10.
The seeds of Cembrae pines are dispersed by nutcrackers (Genus Nucifraga), which cache seeds in soil during autumn. The dispersal and establishment of seedlings via this mutualistic relationship is highly successful. On the other hand, irregular quality of seed crops and lack of detailed knowledge on germination process of Cembrae pine seeds hamper effective seedling production in the nursery. Therefore we studied basic structures and maturity of whitebark pine (Pinus albicaulis Engelm.) and Siberian stone pine (Pinus sibirica Du Tour) seeds, as well as structural changes during a multi-step treatment of whitebark pine seeds, using field emission scanning electron microscopy, transmission electron microscopy and light microscopy. The most striking differences compared to many other conifer seeds were the solid surface structures, early structural differentiation of the embryo, clustering of the thin-walled megagametophyte cells, and great accumulation of starch in both the untreated and treated seeds. Protein bodies of the embryo were in early developmental stages, whereas in the megagametophyte their stages varied. The number, form and size of lipid bodies also varied within different parts of the seed, and lipids dissolved easily. Our results indicated that despite maturity of the seed coat and advanced differentiation of the embryo, the embryo and the megagametophyte were still immature. These morphological features and a notable proportion of storage reserves remaining in unstable form may, however, be advantageous for maintaining viability and reaching maturity within a soil seed bank. Well-controlled pre-treatment simulating natural conditions should result in improved germination.  相似文献   

11.
Abstract.
  • 1 Newly-emerged, second-instar jack pine budworm (Choristoneura pinus Freeman) establish spring feeding sites preferentially in the pollen cones of their host tree, Pinus banksiana Lamb.
  • 2 Laboratory studies showed that the rate of establishment and survival of jack pine budworm on pollen cones was high throughout the entire spring emergence period of the insect.
  • 3 In contrast, the rate of establishment and survival of jack pine budworm on vegetative buds was very poor early in the spring. Vegetative buds were only acceptable as feeding sites to the jack pine budworm for a relatively brief period in late spring.
  • 4 Field studies showed that the change in population density of jack pine budworm during the spring emergence stage, as expressed by k-values, was a function of the abundance of pollen cones in the stand. Population reduction was greatest in those stands with the fewest pollen cones.
  • 5 Direct measurement of spring dispersal by jack pine budworm showed that dispersal and consequent losses to the budworm population were greatest in stands with the fewest pollen cones.
  • 6 We conclude that changes in the density of jack pine budworm are strongly influenced by production of pollen cones in the host stand. Because pollen cone production is related to previous years of defoliation by the jack pine budworm, we propose that pollen cones act as a density-dependent factor governing the density of early-stage jack pine budworm.
  • 7 The resulting dynamics are compared to those of other budworm species and used to explain observed regional and temporal patterns of jack pine budworm outbreaks.
  相似文献   

12.
The ability to learn abstract relational concepts is fundamental to higher level cognition. In contrast to item-specific concepts (e.g. pictures containing trees versus pictures containing cars), abstract relational concepts are not bound to particular stimulus features, but instead involve the relationship between stimuli and therefore may be extrapolated to novel stimuli. Previous research investigating the same/different abstract concept has suggested that primates might be specially adapted to extract relations among items and would require fewer exemplars of a rule to learn an abstract concept than non-primate species. We assessed abstract-concept learning in an avian species, Clark''s nutcracker (Nucifraga columbiana), using a small number of exemplars (eight pairs of the same rule, and 56 pairs of the different rule) identical to that previously used to compare rhesus monkeys, capuchin monkeys and pigeons. Nutcrackers as a group (N = 9) showed more novel stimulus transfer than any previous species tested with this small number of exemplars. Two nutcrackers showed full concept learning and four more showed transfer considerably above chance performance, indicating partial concept learning. These results show that the Clark''s nutcracker, a corvid species well known for its amazing feats of spatial memory, learns the same/different abstract concept better than any non-human species (including non-human primates) yet tested on this same task.  相似文献   

13.
Seed dispersal selection pressures may cause morphological differences in cone structure and seed traits of large‐seeded pine trees. We investigated the cone, seed, and scale traits of four species of animal‐dispersed pine trees to explore the adaptations of morphological structures to different dispersers. The four focal pines analyzed in this study were Chinese white pine (Pinus armandi), Korean pine (P. koraiensis), Siberian dwarf pine (P. pumila), and Dabieshan white pine (P. dabeshanensis). There are significant differences in the traits of the cones and seeds of these four animal‐dispersed pines. The scales of Korean pine and Siberian dwarf pine are somewhat opened after cone maturity, the seeds are closely combined with scales, and the seed coat and scales are thick. The cones of Chinese white pine and Dabieshan white pine are open after ripening, the seeds fall easily from the cones, and the seed coat and seed scales are relatively thin. The results showed that the cone structure of Chinese white pine is similar to that of Dabieshan white pine, whereas Korean pine and Siberian dwarf pine are significantly different from the other two pines and vary significantly from each other. This suggests that species with similar seed dispersal strategies exhibit similar morphological adaptions. Accordingly, we predicted three possible seed dispersal paradigms for animal‐dispersed pines: the first, as represented by Chinese white pine and Dabieshan white pine, relies upon small forest rodents for seed dispersal; the second, represented by Korean pine, relies primarily on birds and squirrels to disperse the seeds; and the third, represented by Siberian dwarf pine, relies primarily on birds for seed dispersal. Our study highlights the significance of animal seed dispersal in shaping cone morphology, and our predictions provide a theoretical framework for research investigating the coevolution of large‐seeded pines and their seed dispersers.  相似文献   

14.
Roadside point counts are often used to estimate trends of bird populations. The use of aural counts of birds without adjustment for detection probability, however, can lead to incorrect population trend estimates. We compared precision of estimates of density and detectability of whistling northern bobwhites (Colinus virginianus) using distance sampling, independent double-observer, and removal methods from roadside surveys. Two observers independently recorded each whistling bird heard, distance from the observer, and time of first detection at 362 call-count stops in Ohio. We examined models that included covariates for year and observer effects for each method and distance from observer effects for the double-observer and removal methods using Akaike's Information Criterion (AIC). The best model of detectability from distance sampling included observer and year effects. The best models from the removal and double-observer techniques included observer and distance effects. All 3 methods provided precise estimates of detection probability (CV = 2.4–4.4%) with a range of detectability of 0.44–0.95 for a 6-min survey. Density estimates from double-observer surveys had the lowest coefficient of variation (2005 = 3.2%, 2006 = 1.7%), but the removal method also provided precise estimates of density (2005 CV = 3.4%, 2006 CV = 4.8%), and density estimates from distance sampling were less precise (2005 CV = 9.6%, 2006 CV = 7.9%). Assumptions of distance sampling were violated in our study because probability of detecting bobwhites near the observer was <1 or the roadside survey points were not randomly distributed with respect to the birds. Distances also were not consistently recorded by individual members of observer pairs. Although double-observer surveys provided more precise estimates, we recommend using the removal method to estimate detectability and abundance of bobwhites. The removal method provided precise estimates of density and detection probability and requires half the personnel time as double-observer surveys. Furthermore, the likelihood of meeting model assumptions is higher for the removal survey than with independent double-observers. © 2011 The Wildlife Society.  相似文献   

15.
The formerly endangered Kirtland's warbler (Setophaga kirtlandii) is among a growing number of conservation-reliant species that depend on active management to avoid reverting to endangered status. Because the Kirtland's warbler is a habitat specialist of young, even-aged jack pine (Pinus banksiana), managers of the recovery effort stressed creating new jack pine stands and monitoring numbers of singing males through an annual census using single visits to individual stands. Kirtland's warbler will occupy and breed in red pine (P. resinosa), but red pine has not been surveyed for Kirtland's warblers in the annual population census. Furthermore, the current monitoring approach cannot determine their species detection probability or individual detection probability, which is essential to evaluate both red pine use and the accuracy of the census. From 2016–2018 we estimated density and detection probabilities in jack pine and red pine stands through repeated visits to a limited number of stands rather than single visits to many stands. Estimates of species detection probability indicated that ≥1 male Kirtland's warbler would be detected on most sites when any were present, but individual detection probabilities were less and varied by stand type, indicating that single visits to sites would underestimate numbers and that accurate estimation of detection probability was important for estimation of density in different stand types. We offer quantitative estimates of detection probabilities for determination of Kirtland's warbler population size in jack pine versus red pine stands in the same areas and breeding seasons. Managers of Kirtland's warblers should incorporate detection probabilities into population surveys to achieve more accurate estimates of population size.  相似文献   

16.
ABSTRACT Brood:pair ratios could provide an economical method for assessing spatial or temporal variation in waterfowl productivity, but such estimators are severely biased by incomplete detection of broods. We conducted 3 sequential counts of 1,357 waterfowl broods in northeastern North Dakota, USA, and used closed-population mark-recapture models to estimate total brood abundance while controlling for variation in detection probabilities (p). Blue-winged teal (Anas discors) broods had the lowest average detection probability (p = 0.305), whereas diving-duck broods had the highest average detectability (p = 0.571). Detection was generally highest in morning or evening, but temporal patterns varied among species and there was no survey window that maximized detection probabilities for all species. Detection probabilities averaged 0.108 (SD = 0.056) higher for an experienced observer versus an inexperienced observer. Detection probabilities were 0.044 higher for roadside versus walk-up surveys and increased with increasing brood size, total brood abundance, survey date, wind speed, temperature, cloud cover, and amount of time spent surveying each wetland. Detection probabilities declined with increasing wetland size and amount of tall peripheral vegetation. Our mark-recapture results indicated that a traditional unreplicated brood survey would have missed 67.5% of estimated broods, summed over all species. Use of closed-population mark-recapture techniques provided an effective method for reducing this bias and identifying and quantifying factors that reduce detection probabilities of waterfowl broods. We recommend that future brood surveys incorporate 2 or 3 temporally segregated replicate counts to allow for formal estimation of detection probabilities.  相似文献   

17.
18.
Effective monitoring of native bee populations requires accurate estimates of population size and relative abundance among habitats. Current bee survey methods, such as netting or pan trapping, may be adequate for a variety of study objectives but are limited by a failure to account for imperfect detection. Biases due to imperfect detection could result in inaccurate abundance estimates or erroneous insights about the response of bees to different environments. To gauge the potential biases of currently employed survey methods, we compared abundance estimates of bumblebees (Bombus spp.) derived from hierarchical distance sampling models (HDS) to bumblebee counts collected from fixed‐area net surveys (“net counts”) and fixed‐width transect counts (“transect counts”) at 47 early‐successional forest patches in Pennsylvania. Our HDS models indicated that detection probabilities of Bombus spp. were imperfect and varied with survey‐ and site‐covariates. Despite being conspicuous, Bombus spp. were not reliably detected beyond 5 m. Habitat associations of Bombus spp. density were similar across methods, but the strength of association with shrub cover differed between HDS and net counts. Additionally, net counts suggested sites with more grass hosted higher Bombus spp. densities whereas HDS suggested that grass cover was associated with higher detection probability but not Bombus spp. density. Density estimates generated from net counts and transect counts were 80%–89% lower than estimates generated from distance sampling. Our findings suggest that distance modelling provides a reliable method to assess Bombus spp. density and habitat associations, while accounting for imperfect detection caused by distance from observer, vegetation structure, and survey covariates. However, detection/non‐detection data collected via point‐counts, line‐transects and distance sampling for Bombus spp. are unlikely to yield species‐specific density estimates unless individuals can be identified by sight, without capture. Our results will be useful for informing the design of monitoring programs for Bombus spp. and other pollinators.  相似文献   

19.
Differential responses by species to modern perturbations in forest ecosystems may have undesirable impacts on plant-animal interactions. If such disruptions cause declines in a plant species without corresponding declines in a primary seed predator, the effects on the plant could be exacerbated. We examined one such interaction between Pinus albicaulis (whitebark pine), a bird-dispersed, subalpine forest species experiencing severe population declines in the northern part of its range, and Tamiasciurus hudsonicus (red squirrel), an efficient conifer seed predator, at 20 sites in two distinct ecosystems. Hypotheses about squirrel habitat preferences were tested to determine how changes in forest conditions influence habitat use and subsequent levels of predispersal cone predation. We performed habitat selection modeling and variable ranking based on Akaike’s information criterion; compared the level and variance of habitat use between two forest types (P. albicaulis dominant and mixed conifer); and modeled the relationship between P. albicaulis relative abundance and predispersal cone predation. T. hudsonicus did not demonstrate strong habitat preference for P. albicaulis, and thus, declines in the pine were not met with proportional declines in squirrel habitat use. P. albicaulis habitat variables were the least important in squirrel habitat selection. Squirrel habitat use was lower and varied more in P. albicaulis-dominant forests, and predispersal cone predation decreased linearly with increasing P. albicaulis relative abundance. In Northern Rocky Mountain sites, where P. albicaulis mortality was higher and abundance lower, squirrel predation was greater than in Central Rocky Mountain sites. In ecosystems with reduced P. albicaulis abundance, altered interactions between the squirrel and pine may lead to a lower proportion of P. albicaulis contributing to population recruitment because of reduced seed availability. Reducing the abundance of competing conifers will create suboptimal squirrel habitat, thus lowering cone predation in P. albicaulis and ensuring more seeds are available for avian dispersal.  相似文献   

20.
The fine-scale genetic structure of a subalpine conifer, whitebark pine (Pinus albicaulis Engelm.), was studied at nested geographic levels from watershed to adjacent stems in the eastern Sierra Nevada Range of California. A combination of several characteristics contributed to unpredicted genetic structure in this species. This includes being one of only 20 pine species worldwide with wingless, bird-dispersed seeds; having the reputed capacity to reproduce vegetatively; and forming distinct growth morphologies at different elevations in this part of its natural range. Genetic differentiation, as measured with 21 allozyme loci, among the three studied watersheds is virtually negligible (FST = 0.004). This is a surprising result because the upper-elevation sites vary somewhat in slope aspect; thus, aspect was confounded with watershed effect. Differentiation between the upper-elevation prostrate krummholz thickets and lower-elevation upright tree clump growth forms is modest (FST = 0.051). Much stronger differentiation was measured among the individual thickets and clumps within their sample sites (FST = 0.334). Within krummholz thickets, multiple individuals are present and genetic relationships often resemble half- to full-sibling family structure (mean r = 0.320). Canonical trend surface analysis in two intensively sampled thickets indicates greatest genotypic variation in the direction of the prevailing wind. At lower elevations, most (72%) of the tree clumps contained more than one genotype; the remaining clumps are probably multistemmed trees. Within tree clumps, family relationships are closer than those for krummholz thickets—commonly full-sibling to selfed structure (mean r = 0.597). Genetic structure is apparently profoundly influenced by the seed-caching behavior of Clark's nutcracker (Nucifraga columbiana Wilson). Western pine species typically show little among-population differentiation and high levels of within-population genetic variation. In whitebark pine in the eastern Sierra Nevada of California, genetic variation is highly structured, especially within the natural groupings—krummholz thickets and upright tree clumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号