首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective media for three biovars of Agrobacterium   总被引:3,自引:1,他引:2  
Three selective media for the isolation of the three known biovars of Agrobacterium are described. Selectivity was based on carbon and nitrogen sources; L(—)-arabitol for biovar 1, erythritol for biovar 2 and a combination of tartrate and D-glutamate for biovar 3. The new media were compared with existing selective media. Recovery of agrobacteria from soil was very efficient and discrimination between the three biovars was satisfactory except for tartrate-utilising biovar 1 isolates which grew on the biovar 3 medium. Some strains of Pseudomonas sp. isolated from crown galls on vine could utilise octopine as a source of carbon and nitrogen.  相似文献   

2.
Zhou D  Tong Z  Song Y  Han Y  Pei D  Pang X  Zhai J  Li M  Cui B  Qi Z  Jin L  Dai R  Du Z  Wang J  Guo Z  Wang J  Huang P  Yang R 《Journal of bacteriology》2004,186(15):5147-5152
Yersinia pestis has been historically divided into three biovars: antiqua, mediaevalis, and orientalis. On the basis of this study, strains from Microtus-related plague foci are proposed to constitute a new biovar, microtus. Based on the ability to ferment glycerol and arabinose and to reduce nitrate, Y. pestis strains can be assigned to one of four biovars: antiqua (glycerol positive, arabinose positive, and nitrate positive), mediaevalis (glycerol positive, arabinose positive, and nitrate negative), orientalis (glycerol negative, arabinose positive, and nitrate positive), and microtus (glycerol positive, arabinose negative, and nitrate negative). A 93-bp in-frame deletion in glpD gene results in the glycerol-negative characteristic of biovar orientalis strains. Two kinds of point mutations in the napA gene may cause the nitrate reduction-negative characteristic in biovars mediaevalis and microtus, respectively. A 122-bp frameshift deletion in the araC gene may lead to the arabinose-negative phenotype of biovar microtus strains. Biovar microtus strains have a unique genomic profile of gene loss and pseudogene distribution, which most likely accounts for the human attenuation of this new biovar. Focused, hypothesis-based investigations on these specific genes will help delineate the determinants that enable this deadly pathogen to be virulent to humans and give insight into the evolution of Y. pestis and plague pathogenesis. Moreover, there may be the implications for development of biovar microtus strains as a potential vaccine.  相似文献   

3.
Growth of Nitrobacter by dissimilatoric nitrate reduction   总被引:2,自引:0,他引:2  
Abstract Eight strains of the genus Nitrobacter grew under anaerobic conditions in the presence of nitrate. The growth was inhibited by nitrate concentrations above 0.5 mM. By a special culture technique inhibition caused by nitrite was abolished. Nitrate oxidizing cells grew in gas tight culture flasks as a biofilm on a gas-permeable silicone tubing. The biofilm allowed nitrate-reducing cells to grow at a low nitrite concentration. These cells grew either actively motile in the anaerobic medium, or in anaerobic zones of the biofilm. They produced nitrite and ammonia. Nitrogen balance calculations established a loss of inorganic nitrogen for 5 of 8 strains. This implies that nitrate-reducing cells produced furthermore volatile nitrogen compounds. N2O was detected by gas chromatography.  相似文献   

4.
Polygalacturonase Production by Agrobacterium tumefaciens Biovar 3   总被引:3,自引:1,他引:2       下载免费PDF全文
Agrobacterium tumefaciens biovar 3 causes both crown gall and root decay of grape. Twenty-two Agrobacterium strains representing biovars 1, 2, and 3 were analyzed for tumorigenicity, presence of a Ti plasmid, ability to cause grape seedling root decay, and pectolytic activity. All of the biovar 3 strains, regardless of their tumorigenicity or presence of a Ti plasmid, caused root decay and were pectolytic, whereas none of the biovar 1 and 2 strains had these capacities. Isoelectrically focused gels that were activity stained with differentially buffered polygalacturonate-agarose overlays revealed that all of the biovar 3 strains produced a single polygalacturonase with a pH optimum of 4.5 and pIs ranging from 4.8 to 5.2. The enzyme was largely extracellular and was produced constitutively in basal medium supplemented with a variety of carbon sources including polygalacturonic acid. Lesions on grape seedling roots inoculated with A. tumefaciens biovar 3 strain CG49 yielded polygalacturonase activity with a pI similar to that of the enzyme produced by the bacterium in culture. These observations support the hypothesis that the polygalacturonase produced by A. tumefaciens biovar 3 has a role in grape root decay.  相似文献   

5.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

6.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

7.
AIMS: To isolate aerobic denitrifying bacteria which will be applied to piggery wastewater treatment facilities for enhanced nitrate and nitrite removal. METHODS AND RESULTS: Nitrate-supplemented basal medium in airtight, crimp-sealed serum bottles containing an atmosphere of 92% oxygen was inoculated with denitrifiers, strains NS-2 and SM-3, and incubated at 30 degrees C. After 20 h, the concentration of nitrate was decreased rapidly by both NS-2 and SM-3. Nitrite production was almost zero during the whole experimental period for both strains. Nitrogen gas production peaked at the 20 h for both NS-2 (8.20 +/- 1.03 mmol l(-1)) and SM-3 (3.93 +/- 0.16 mmol l(-1)). CONCLUSIONS: Strain NS-2, which produced the highest N2 concentration in this work, was identified as Pseudomonas stutzeri. This strain is the most capable of aerobic and anaerobic conversion of nitrate to N2 without forming a nitrite intermediate. SIGNIFICANCE AND IMPACT OF THE STUDY: Strain NS-2 is highly promising for future application in in situ piggery wastewater treatment.  相似文献   

8.
The genetic basis of the varying ability to reduce nitrate in strains belonging to different biovars and subspecies of plague-causing microbe has been investigated and the inability to reduce nitrate observed in different intraspecies groups of Yersinia pestis has been shown to stem from mutations in different genes involved in the expression of this trait. The absence of denitrifying activity in strains of altaica and hissarica subspecies was not due to a mutation at position 613 of the periplasmic reductase napA observed in the strains of the biovar medievalis of the main subspecies, but rather was due to a mutation in the sequence encoding the nitrate-binding domain of the ABC transporter protein SsuA; a thymine insertion (+T) was detected at position 302 from the start of the ssuA gene. Five strains of biovar antiqua isolated at different times in Mongolia, China, and Africa were shown to lack the ability to reduce nitrate. A PCR test targeting two chromosomal regions containing deletions of 19 and 24 bp in size has been developed for the identification of strains of the biovar medievalis. This test can be combined with the test for the marker mutation in the napA gene for a more reliable detection of Y. pestis strains belonging to this biovar.  相似文献   

9.
narK mutants of Escherichia coli produce wild-type levels of nitrate reductase but, unlike the wild-type strain, do not accumulate nitrite when grown anaerobically on a glucose-nitrate medium. Comparison of the rates of nitrate and nitrite metabolism in cultures growing anaerobically on glucose-nitrate medium revealed that a narK mutant reduced nitrate at a rate only slightly slower than that in the NarK+ parental strain. Although the specific activities of nitrate reductase and nitrite reductase were similar in the two strains, the parental strain accumulated nitrite in the medium in almost stoichiometric amounts before it was further reduced, while the narK mutant did not accumulate nitrite in the medium but apparently reduced it as rapidly as it was formed. Under conditions in which nitrite reductase was not produced, the narK mutant excreted the nitrite formed from nitrate into the medium; however, the rate of reduction of nitrate to nitrite was significantly slower than that of the parental strain or that which occurred when nitrite reductase was present. These results demonstrate that E. coli is capable of taking up nitrate and excreting nitrite in the absence of a functional NarK protein; however, in growing cells, a functional NarK promotes a more rapid rate of anaerobic nitrate reduction and the continuous excretion of the nitrite formed. Based on the kinetics of nitrate reduction and of nitrite reduction and excretion in growing cultures and in washed cell suspensions, it is proposed that the narK gene encodes a nitrate/nitrite antiporter which facilitates anaerobic nitrate respiration by coupling the excretion of nitrite to nitrate uptake. The failure of nitrate to suppress the reduction of trimethylamine N-oxide in narK mutants was not due to a change in the level of trimethylamine N-oxide reductase but apparently resulted from a relative decrease in the rate of anaerobic nitrate reduction caused by the loss of the antiporter system.  相似文献   

10.
Evaluation of nitric oxide production by lactobacilli   总被引:4,自引:0,他引:4  
Six strains of Lactobacillus fermentum and Lactobacillus plantarum were investigated for nitric oxide (NO) production. First, the potential presence of NO synthase was examined. None of the strains of L. fermentum and L. plantarum examined produced NO from L-arginine under aerobic conditions. Interestingly, all L. fermentum strains expressed strong L-arginine deiminase activity. All L. fermentum strains produced NO in MRS broth, but the NO was found to be chemically derived from nitrite, which was produced by L. fermentum from nitrate present in the medium. Indeed all L. fermentum strains express nitrate reductase under anaerobic conditions. Moreover, one strain, L. fermentum LF1, had nitrate reductase activity under aerobic conditions. It was also found that L. fermentum strains JCM1173 and LF1 possessed ammonifying nitrite reductase. The latter strain also had denitrifying nitrite reductase activity at neutral pH under both anaerobic and aerobic conditions. The LF1 strain is thus capable of biochemically converting nitrate to NO. NO and nitrite produced from nitrate by lactobacilli may constitute a potential antimicrobial mechanism. studied in a rat acute liver injury model (Adawi et al. 1997). The results indicate that Lactobacillus plantarum DSM 9842 may possess NOS (Adawi et al. 1997). However, NO production from L-arginine has not been investigated in pure cultures of L. plantarum. According to the results of a 15N enrichment experiment, traces of (NO2-+NO3-)-N (total oxidised nitrogen: TON), which seemed to be formed by the resting cells of Lactobacillus fermentum IFO3956, appeared to be derived from L-arginine (Morita et al. 1997). Therefore, it was suggested that L. fermentum may possess a NOS. However, NO produced from L-arginine was not directly measured and a NOS inhibitor test was not performed by Morita et al. (1997). It is known that L-arginine deiminase (ADI) in bacteria may convert L-arginine to NH4+ (Cunin et al. 1986), which may be further oxidised to TON via nitrification by bacteria. Therefore, 15N enrichment experiments could not definitely conclude that L. fermentum possess NOS to convert L-arginine directly to NO. In this study, six Lactobacillus strains belonging to L. plantarum and L. fermentum were measured for NO production in MRS broth. The metabolism of nitrate and L-arginine by the Lactobacillus cell suspensions was also studied. The possibility that NO and nitrite production by lactobacilli may be a potential probiotic trait is also discussed.  相似文献   

11.
A genetic approach was used to study (dissimilatory) ferric iron (Fe3+) reduction in Shewanella putrefaciens 200. Chemical mutagenesis procedures and two rapid plate assays were developed to facilitate the screening of Fe3+ reduction-deficient mutants. Sixty-two putative Fe3+ reduction-deficient mutants were identified, and each was subsequently tested for its ability to grow anaerobically on various compounds as sole terminal electron acceptors, including Fe3+, nitrate (NO3-), nitrite (NO2-), manganese oxide (Mn4+), sulfite (SO3(2-)), thiosulfate (S2O3(2-)), trimethylamine N-oxide, and fumarate. A broad spectrum of mutants deficient in anaerobic growth on one or more electron acceptors was identified. Nine of the 62 mutants (designated Fer mutants) were deficient only in anaerobic growth on Fe3+ and retained the ability to grow on all other electron acceptors. These results suggest that S. putrefaciens expresses at least one terminal Fe3+ reductase that is distinct from other terminal reductases coupled to anaerobic growth. The nine Fer mutants were conjugally mated with an S. putrefaciens genomic library harbored in Escherichia coli S17-1. Complemented S. putrefaciens transconjugants were identified by the acquired ability to grow anaerobically on Fe3+ as the sole terminal electron acceptor. All recombinant cosmids that conferred the Fer+ phenotype appeared to carry a common internal region.  相似文献   

12.
Under anaerobic conditions, Propionibacterium pentosaceum reduces nitrate to nitrite until nitrate is exhausted from the medium when nitrite is converted into N2 or N2O. In the presence of nitrate, fermentation patterns for lactate, glycerol and pyruvate were different from those obtained during anaerobic growth without an inorganic electron acceptor. In the presence of these substrates, a drastic decrease in propionate formation was observed, some pyruvate accumulated during growth with lactate, and acetate was produced from glycerol. Acetate production from lactate and pyruvate was not influenced by the presence of nitrate. Furthermore, CO2 was produced by citric acid cycle activity. The fermentation pattern during nitrite reduction resembled that of P. pentosaceum grown anaerobically without an inorganic electron acceptor. Nitrits has a toxic effect, since bacteria inoculated into a medium with 9 mM-nitrite failed to grow. The cytochrome spectrum of anaerobically grown P. pentosaceum was similar with and without nitrate. In membrane fractions of bacteria grown anaerobically with nitrate, cytochrome b functioned in the transfer of electrons from lactate, glycerol I-phosphate and NADH to nitrate. Molar growth yeilds were increased in the presence of nitrate, indicating an increased production of ATP. This could be explained by citric acid cycle activity, and by ocidative phosphorylation coupled to nitrate reduction. Assuming that I mol ATP is formed in the electron transfer from lactate or glycerol I-phosphate to nitrate, and that 2 mol ATP are formed in the electron transfer from NADH to nitrate, YATP values (g dry wt bacteria/mol ATP) were obtained of between 5-0 and 12-6. The higher YATP values were similar to those obtained during anaerobic growth without an inorganic electron acceptor. This supports the assumptions about the efficiency of oxidative phosphorylation for electron transport to nitrate. Low YAPT values were found when high concentrations of nitrite (15 to 50 mM) accumulated, and were probably due to the toxic effect of nitrite.  相似文献   

13.
Thirty-four bacterial isolates from an agricultural soil anaerobically preincubated in the presence of glucose were tested for their ability to reduce nitrate to ammonia or to denitrify in two different media: nitrate broth and a minimal medium enriched with glucose. Ten isolates were considered denitrifying bacteria and 7 were dissimilatory ammonia producers. Ammonia production by the isolate identified as Enterobacter amnigenus was quantified and attained 50% of 138?mg?L(-1) of added NO(3)(-) N. The dissimilatory character of this reduction was clearly confirmed by culturing this (15)N-labeled bacterium in the presence of unlabeled nitrite. Nitrous oxide was produced at the same time as nitrite was reduced to ammonia. Increasing nitrate N levels from 48 to 553?mg?L(-1) in culture medium resulted in an increase in the level of nitrite produced and simultaneously a decrease in ammonia and nitrous oxide production. Key words: dissimilatory nitrate reduction, dissimilatory ammonia production, denitrification, Enterobacter amnigenus, (15)N.  相似文献   

14.
Abstract: A total of 28 nitrate-reducing bacteria were isolated from marine sediment (Mediterranean coast of France) in which dissimilatory reduction of nitrate to ammonium (DRNA) was estimated as 80% of the overall nitrate consumption. Thirteen isolates were considered as denitrifiers and ten as dissimilatory ammonium producers. 15N ammonium production from 15N nitrate by an Enterobacter sp. and a Vibrio sp., the predominant bacteria involved in nitrate ammonification in marine sediment, was characterized in pure culture studies. For both strains studied, nitrate-limited culture (1 mM) produced ammonium as the main product of nitrate reduction (> 90%) while in the presence of 10 mM nitrate, nitrite was accumulated in the spent media and ammonia production was less efficient. Concomitantly with the dissimilation of nitrate to nitrite and ammonium the molar yield of growth on glucose increased. Metabolic products of glucose were investigated under different growth conditions. Under anaerobic conditions without nitrate, ethanol was formed as the main product; in the presence of nitrate, ethanol disappeared and acetate increased concomitantly with an increased amount of ammonium. These results indicate that nitrite reduction to ammonium allows NAD regeneration and ATP synthesis through acetate formation, instead of ethanol formation which was favoured in the absence of nitrate.  相似文献   

15.
A total of 319 strains of S. aureus and 729 strains of S. epidermidis belonging to different biovars isolated from the skin and nasal mucosa of 349 persons representing 8 independent groups were tested. On the whole production of penicillinase was more often observed in the strains of S. aureus than in the strains of S. epidermidis. Within the first species this property was more often detected in the strains of biovar I as compared to the other biovars. However, the frequency of the penicillinase-producing strains within S. aureus and the biovars of S. epidermidis markedly varied.  相似文献   

16.

Background  

Yersinia enterocolitica, an important food- and water-borne enteric pathogen is represented by six biovars viz. 1A, 1B, 2, 3, 4 and 5. Despite the lack of recognized virulence determinants, some biovar 1A strains have been reported to produce disease symptoms resembling that produced by known pathogenic biovars (1B, 2-5). It is therefore imperative to identify determinants that might contribute to the pathogeniCity of Y. enterocolitica biovar 1A strains. Y. enterocolitica invariably produces urease and the role of this enzyme in the virulence of biovar 1B and biovar 4 strains has been reported recently. The objective of this work was to study genetic organization of the urease (ure) gene complex of Y. enterocolitica biovar 1A, biochemical characterization of the urease, and the survival of these strains under acidic conditions in vitro.  相似文献   

17.
The beta-lactamase genes blaA and blaB were detected by PCR amplification in strains of Yersinia enterocolitica biovar 1A isolated from India, Germany, France and the USA. Both genes were detected in all strains. Polymerase chain reaction-restriction fragment length polymorphism revealed genetic heterogeneity in blaA but not in blaB. Cluster analysis of blaA restriction profiles grouped the strains into three groups. The blaA gene of Y. enterocolitica biovar 1A showed a high degree of sequence homology to that of Y. enterocolitica 8081 (biovar 1B) and Y. enterocolitica Y-56 (biovar 4), whereas homology was low with class A beta-lactamase genes of other members of the family Enterobacteriaceae. The pI 8.7 of enzyme Bla-A of Y. enterocolitica biovar 1A was similar to that of biovars 2, 3 and 4. The enzyme Bla-B focused at 6.8 and 7.1, indicating that biovar 1A strains produced a 'B-like' enzyme. This is the first study to have investigated the genetic heterogeneity of the beta-lactamase genes of Y. enterocolitica.  相似文献   

18.
The cellular morphology, colonial morphology, biochemical properties, DNA base compositions, and DNA-DNA homolgies of three biovars of Fusobacterium necrophorum were examined. Some differences were found among the three biovars in cellular morphology, colonial morphology, and biochemical properties. The guanine-plus-cytosine contents of DNAs from biovar C strains Fn521T (T = type strain), Fn522, and Fn520 were 30.4, 29.3, and 28.0 mol%, respectively, and the guanine-plus-cytosine contents of DNAs from strains VPI 2891 (biovar A) and VPI 6161 (biovar B) were 31.3 and 32.0 mol%, respectively. Labeled DNA from biovar C strain Fn521T exhibited 96 and 82% relatedness to DNAs from biovar C strains Fn522 and Fn520, respectively; however, it exhibited only about 10% relatedness to DNAs from strains of biovars A and B. Labeled DNAs from strains VPI 2891 and VPI 6161 exhibited more than 70% relatedness to each other, but about 6 to 20% relatedness to DNAs from biovar C strains. Therefore, Fusobacterium pseudonecrophorum sp. nov., nom. rev. (ex Prévot 1940) is proposed for Fusobacterium necrophorum biovar C. The type strain is strain Fn521 (= JCM 3722).  相似文献   

19.
The effect of cyclic AMP on anaerobic growth of Escherichia coli   总被引:7,自引:0,他引:7  
Adenosine 3′,5′-cyclic phosphate (cyclic AMP) stimulated a cyclic AMP-deficient mutant strain of Escherichia coli to grow anaerobically on glucose in a minimal medium and in media supplemented with nitrate or casein hydrolysate. Cyclic AMP was found to stimulate the production of the formic hydrogenlyase system in this mutant strain, but had no effect on its ability to carry out anaerobic reductions of nitrate or nitrite. It was also observed that CO2 stimulated the anaerobic growth of the mutant in the absence of cyclic AMP.  相似文献   

20.
The biological and biochemical properties, DNA base compositions, and levels of DNA-DNA homology of two biovars of Fusobacterium necrophorum were examined. Some differences were found between the two biovars in biological and biochemical properties. The G + C contents of DNAs from biovar A strains VPI 2891T (T = type strain), NCTC 10576, N167, Fn47, and Fn43, were 32, 30, 29, 28, and 31 mol%, respectively. The G + C contents of DNAs from biovar B strains Fn524T, 606, Fn49, Fn45, and 1260 were 30, 31, 27, 31, and 30 mol%, respectively. Labeled DNA from biovar A strain VPI 2891T exhibited 100 to 80% relatedness to DNAs from biovar A strains and 59 to 51% relatedness to DNAs from biovar B strains. Labeled DNA from biovar B strain Fn524T exhibited 100 to 81% relatedness to DNAs from biovar B strains and 71 to 60% relatedness to DNAs from biovar A strains. Therefore, the names Fusobacterium necrophorum subsp. necrophorum subsp. nov., nom. rev. (ex Flügge 1886), and Fusobacterium necrophorum subsp. funduliforme subsp. nov., nom. rev. (ex Hallé 1898), are proposed for Fusobacterium necrophorum biovars A and B, respectively. The type strain of F. necrophorum subsp. necrophorum is strain VPI 2891 (= JCM 3718 = ATCC 25286), and the type strain of F. necrophorum subsp. funduliforme is strain Fn524 (= JCM 3724).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号