首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 305 毫秒
1.
2.
The mutual relationship between the water potential (γ w ), its components, namely the osmotic potential (γ s ) and the pressure potential (γ p ), and the water saturation deficit (ΔW sat ) were determined in the leaves of different insertion levels. During the water stress development in kale plants induced by decreasing soil moisture theγ w decreased, parallely in all the leaves but the same decrease ofγ q was accompanied by the highest decrease of theγ p , probably due to the accumulation of osmotically active solutes, and the lowest decrease ofγ p in the upper leaves and with the lowest decrease ofγ s and the highest decrease ofγ p in the lower leaves. Also the corresponding values of the ΔW sat were always lower in the upper than in the middle and lower leaves. Thus the upper leaves wilted at more negative values ofγ w than the other leaves. On the contrary, during the wilting of the cut off leaves the relationship betweenγ w and ΔW sat in the upper, middle and lower leaves was practically the same. The very slightly higher decrease ofγ s in the upper leaves in comparison with the other leaves was compensated by a lower deerease of theirγ p . These changes in the ratios ofγ w ,γ s ,γ p and ΔW sat with the leaf insertion levels enabled the preference of the upper leaves in retaining the necessary water supply during the wilting of plantsin situ.  相似文献   

3.
Chen CP  Zhu XG  Long SP 《Plant physiology》2008,148(2):1139-1147
Application of the widely used Farquhar model of photosynthesis in interpretation of gas exchange data assumes that photosynthetic properties are homogeneous throughout the leaf. Previous studies showed that heterogeneity in stomatal conductance (gs) across a leaf could affect the shape of the measured leaf photosynthetic CO2 uptake rate (A) versus intercellular CO2 concentration (Ci) response curve and, in turn, estimation of the critical biochemical parameters of this model. These are the maximum rates of carboxylation (Vc,max), whole-chain electron transport (Jmax), and triose-P utilization (VTPU). The effects of spatial variation in Vc,max, Jmax, and VTPU on estimation of leaf averages of these parameters from A-Ci curves measured on a whole leaf have not been investigated. A mathematical model incorporating defined degrees of spatial variability in Vc,max and Jmax was constructed. One hundred and ten theoretical leaves were simulated, each with the same average Vc,max and Jmax, but different coefficients of variation of the mean (CVVJ) and varying correlation between Vc,max and Jmax (Ω). Additionally, the interaction of variation in Vc,max and Jmax with heterogeneity in VTPU, gs, and light gradients within the leaf was also investigated. Transition from Vc,max- to Jmax-limited photosynthesis in the A-Ci curve was smooth in the most heterogeneous leaves, in contrast to a distinct inflection in the absence of heterogeneity. Spatial variability had little effect on the accuracy of estimation of Vc,max and Jmax from A-Ci curves when the two varied in concert (Ω = 1.0), but resulted in underestimation of both parameters when they varied independently (up to 12.5% in Vc,max and 17.7% in Jmax at CVVJ = 50%; Ω = 0.3). Heterogeneity in VTPU also significantly affected parameter estimates, but effects of heterogeneity in gs or light gradients were comparatively small. If Vc,max and Jmax derived from such heterogeneous leaves are used in models to project leaf photosynthesis, actual A is overestimated by up to 12% at the transition between Vc,max- and Jmax-limited photosynthesis. This could have implications for both crop production and Earth system models, including projections of the effects of atmospheric change.  相似文献   

4.
In this study, S-allele diversity of eight wild and two commercial species of the Cerasus subgenus in Iran was investigated using two primer pairs. A high level of S-allele polymorphism was detected among and within the species evaluated. Furthermore, most of wild species showed 2–4 alleles based on S-allele primers and may be considered as tetraploid. Sweet cherry cultivars, Siah-Mashhad, Siah-Shabestar, Takdaneh-Mashhad, Siah-Daneshkadeh and Protiva showed S3S12, S3S12, S3S12, S3S5 and S3S4 combinations, respectively, allele S3 showing the highest frequency. Three Iranian sweet cherry cultivars had the same allelic combination (S3S12) that the same ancestor in genealogy of these cultivars may explain the loss of diversity observed at the S-locus. Wild cherry (mazzard) accessions showed wide range of alleles such as S1, S2, S7, S14 and S20 and unknown alleles, while sour cherries showed S6, S9, S13 and S27 alleles. In conclusion, the conservation of these highly diverse native species of Iranian wild Cerasus germplasm is recommended for future breeding activity.  相似文献   

5.
1. Evolutionary changes in the structure of an enzyme that provide an increase in its Km value are considered. Provided that Km increases as a result of increases in the forward rate constants of the catalysis relative to the reverse rate constants, the enzyme catalyses the conversion of a fixed concentration of its substrate more rapidly when its structure provides that Km>[S] than when Km<[S]. 2. Catalytic efficiency of enzymes is discussed in terms of the simplest plausible model, the Haldane [(1930) Enzymes, Longmans, London] reversible three-step model: [Formula: see text] The rate equation for the forward reaction of this model (formation of P) may be written in the simple form: [Formula: see text] Keq. is the equilibrium constant (=[P]eq./[S]eq.), and kcat.=V/[E]T, where [E]T is the total enzyme concentration. 3. To assess the effectiveness of an enzyme, it is necessary only to determine the extent to which the constraints of a particular kinetic mechanism permit v2 (v when Km»[S]) to approach vd (the diffusion-limited rate). 4. The value of the optimal rate of catalysis (vopt., the maximal value of v2) is dictated by the equilibrium constant for the reaction, Keq.; v2=vd/a, where [Formula: see text] when k+1 is assumed equal to k−3, and vopt.=vd/amin.. When Keq.≥1, it is necessary that k+2»k−1 for a to take its minimum value, amin.; when Keq.«1, it is necessary only that k+2»Keq.·k−1, i.e. a can equal amin. even if k+2<k−1. When Keq.»1, vopt.=vd; when Keq.=1, vopt.=vd/2, and when Keq.«1, vopt.=Keq.·vd. 5. The analysis, together with predicted effects of evolutionary pressure, suggests that in practice the rates of the fastest enzyme-catalysed freely reversible reactions might be expected to be lower than the value of k+1[E]T[S] by about an order of magnitude, particularly if Keq.<1. 6. The existing literature suggests that, in general, appropriate values of Km have evolved for the provision of high rates of catalysis but that many values of kcat. are not large enough to provide optimal rates of catalysis unless the value of k+1 in vivo is lower than its value in free solution.  相似文献   

6.
Three progenies of sour cherry (Prunus cerasus) were analysed to correlate self-(in)compatibility status with S-RNase phenotype in this allotetraploid hybrid of sweet and ground cherry. Self-(in)compatibility was assessed in the field and by monitoring pollen tube growth after selfing. The S-RNase phenotypes were determined by isoelectric focusing of stylar proteins and staining for RNase activity and, for the parents, confirmed by PCR. Seedling phenotypes were generally consistent with disomic segregation of S-RNase alleles. The genetic arrangements of the parents were deduced to be ‘Köröser’ (self-incompatible) S 1 S 4 .S B S D , ‘Schattenmorelle’ (self-compatible) S 6 S 13 .S B S B , and clone 43.87 (self-compatible) S 4 S 13 .S B S B , where “.” separates the two homoeologous genomes. The presence of S 4 and S 6 alleles at the same locus led to self-incompatibility, whereas S 13 and S B at homoeologous loci led to self-compatibility. The failure of certain heteroallelic genotypes in the three crosses or in the self-incompatible seedlings indicates that S 4 and S 6 are dominant to S B . However, the success of S 13 S B pollen on styles expressing corresponding S-RNases indicates competitive interaction or lack of pollen-S components. In general, the universal compatibility of S 13 S B pollen may explain the frequent occurrence of S 13 and S B together in sour cherry cultivars. Alleles S B and S D , that are presumed to derive from ground cherry, and S 13 , presumably from sweet cherry, were sequenced. Our findings contribute to an understanding of inheritance of self-(in)compatibility, facilitate screening of progenies for self-compatibility and provide a basis for studying molecular interactions in heteroallelic pollen.  相似文献   

7.
Mesophyll conductance (g m) is essential to determine accurate physiological parameters used to model photosynthesis in forest ecosystems. This study aimed to determine the effects of time of day on photosynthetic parameters, and to assess the effect of using either intercellular CO2 concentration (C i) or chloroplast CO2 concentration (C c), on maximum carboxylation velocity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), V cmax. We used Amazonian saplings of Myrcia paivae and Minquartia guianensis. Photosynthetic parameters were measured using an infrared gas analyzer (IRGA); g m was determined using both gas exchange and chlorophyll (Chl) a fluorescence and gas-exchange data alone. Leaf thickness (L T) and specific leaf area (SLA) were also measured. Air temperature, relative humidity or understory light did not correlate with g m and on average daily IRGA-fluorometer-determined g m was 0.04 mol(CO2) m?2 s?1 for M. paivae and 0.05 mol(CO2) m?2 s?1 for M. guianensis. Stomatal conductance (g s), g m, electron transport rate (J F), and light-saturated net photosynthetic rate (P Nmax) were lower in the afternoon than in the morning. However, no effect of time of day was observed on V cmax. L T and SLA did not affect any of the examined parameters. IRGA-determined g m was almost the double of the value obtained using the IRGA-fluorescence method. V cmax values determined using C c were about 25% higher than those obtained using C i, which highlighted the importance of using C c in V cmax calculation. Decline in P Nmax at the end of the afternoon reflected variations in g s and g m rather than changes in V cmax. Diurnal variation in g m appeared to be associated more with endogenous than with atmospheric factors.  相似文献   

8.
9.
As a prerequisite to studying the genetics and breeding of chasmogamous and cleistogamous flowers, a preliminary experiment was performed to estimate the extent of cross-pollination in cotton varieties and hybrids. Vicinism estimates varied from 0.53 to 15.36%, i.e., the proportion of cross-pollination was relatively high, leading to a biological contamination. As a result of such contamination, genetic collection lines and varieties lose genetic homogeneity and become heterozygous and genetically heterogeneous. The genetic control of the flower type was studied in the Gossipium hirsutum L. × G. barbadense L. interspecific hybrids, and phenotypic segregation of the 3: 1 and 15: 1 types with monogenic (3: 1) and digenic (15: 1) differences of noncumulative polymerization was observed. The corresponding types of genotypic segregation were 1: 2: 1 (1Cg 1 Cg 1 cg 2 cg 2 : 2Cg 1 cg 1 cg 2 cg 2 : 1cg 1 cg 1 cg 2 cg 2 ) and 1: 2: 2: 4: 1: 2: 1: 2: 1 (1) Cg 1 Cg 1 Cg 2 Cg 2 -1; (2) Cg 1 Cg 1 cg 2 cg 2 -2; (3) Cg 1 cg 1 Cg 2 Cg 2 -2; (4) Cg 1 cg 1 Cg 2 cg 2-4; (5) Cg 1 Cg 1 cg 2 cg 2 -1; (6) Cg 1 cg 1 cg 2 cg 2 -2; (7) cg 1 cg 1 Cg 2 Cg 2-1; (8) cg 1 cg 1 Cg 2 cg 2 -2; (9) cg 1 cg 1 cg 2 cg 2 -1. Genotypes (1)–(8) had chasmogamous flowers, while double-recessive genotype (9) had cleistogamous flowers. Based on this, genotypes with individual phenotypic expression were identified in F2, and their correlation with the most important morphological, biological, and agricultural features was studied. Special attention was paid to the productivity of hybrid plants intended for use in breeding to obtain intensive varieties. The study made it possible to isolate forms, families, genetic collection lines, and varieties with isogenic or nonisogenic determination of these characters and chasmogamous and cleistogamous flowers of G. hirsutum L. and G. barbadense L. prototypes by using original methods to examine the two types of flowers; the methods do not have analogs in cotton breeding worldwide.  相似文献   

10.
Highly purified native α2-macroglobulin (α2M), α2M-trypsin, and α2M-methylamine were compared in experiments designed to study protein precipitation. Significant turbidity developed within 30 min in solutions containing histone H3 and either α2M-methylamine or α2M-trypsin, as determined by absorbance at λ = 550 nm. No turbidity was detected in solutions that contained histone H3 and native α2M or histone H3 alone. Experiments with radioiodinated histone H3 or radioiodinated proteinase inhibitor confirmed that both the H3 and the α2M “fast” forms (α2M-methylamine, α2M-trypsin) were present in the precipitates generated. As much as 70% of the 125I-α2M-methylamine was recovered in the precipitate after incubation with a 120-fold molar excess of H3 (concentration of α2M-methylamine, 0.28 μm). The ratio of histone to proteinase inhibitor by weight in the precipitate was approximately two. Under comparable conditions, somewhat less α2M-trypsin precipitated from solutions containing H3 than did α2M-methylamine; however, inactivation of the α2M-trypsin with phenylmethylsulfonyl fluoride prior to incubation increased the level of precipitation significantly. Solutions containing poly-l-lysine (Mr ~ 13,000) instead of histone did not form precipitates with any of the forms of α2M studied. In a second set of experiments, radioiodinated native α2M, α2M-trypsin, and α2M-methylamine were incubated in solutions containing ZnCl2, BaCl2, CdCl2, CuSO4, MgCl2, or NiCl2 (concentration of divalent cation between 5 μm and 1.0 mm). Native α2M was soluble in all of these salts. By contrast, α2M-methylamine and α2M-trypsin precipitated extensively from solutions containing greater than 100 μm ZnCl2. Precipitation was greater than 90% complete at 1 mm ZnCl2. A similar effect was not observed with any of the other divalent cations.  相似文献   

11.
The oxygen-evolving complex of Photosystem II cycles through five oxidation states (S0-S4), and dark incubation leads to 25% S0 and 75% S1. This distribution cannot be reached with charge recombination reactions between the higher S states and the electron acceptor QB. We measured flash-induced oxygen evolution to understand how S3 and S2 are converted to lower S states when the electron required to reduce the manganese cluster does not come from QB. Thylakoid samples preconditioned to make the concentration of the S1 state 100% and to oxidize tyrosine YD were illuminated by one or two laser preflashes, and flash-induced oxygen evolution sequences were recorded at various time intervals after the preflashes. The distribution of the S states was calculated from the flash-induced oxygen evolution pattern using an extended Kok model. The results suggest that S2 and S3 are converted to lower S states via recombination from S2QB and S3QB and by a slow change of the state of oxygen-evolving complex from S3 and S2 to S1 and S0 in reactions with unspecified electron donors. The slow pathway appears to contain two-electron routes, S2QBS0QB, and S3QBS1QB. The two-electron reactions dominate in intact thylakoid preparations in the absence of chemical additives. The two-electron reaction was replaced by a one-electron-per-step pathway, S3QBS2QBS1QB in PS II-enriched membrane fragments and in thylakoids measured in the presence of artificial electron acceptors. A catalase effect suggested that H2O2 acts as an electron donor for the reaction S2QBS0QB but added H2O2 did not enhance this reaction.  相似文献   

12.
A key objective for sustainable agriculture and forestry is to breed plants with both high carbon gain and water-use efficiency (WUE). At the level of leaf physiology, this implies increasing net photosynthesis (A N) relative to stomatal conductance (g s). Here, we review evidence for CO2 diffusional constraints on photosynthesis and WUE. Analyzing past observations for an extensive pool of crop and wild plant species that vary widely in mesophyll conductance to CO2 (g m), g s, and foliage A N, it was shown that both g s and g m limit A N, although the relative importance of each of the two conductances depends on species and conditions. Based on Fick’s law of diffusion, intrinsic WUE (the ratio A N/g s) should correlate on the ratio g m/g s, and not g m itself. Such a correlation is indeed often observed in the data. However, since besides diffusion A N also depends on photosynthetic capacity (i.e., V c,max), this relationship is not always sustained. It was shown that only in a very few cases, genotype selection has resulted in simultaneous increases of both A N and WUE. In fact, such a response has never been observed in genetically modified plants specifically engineered for either reduced g s or enhanced g m. Although increasing g m alone would result in increasing photosynthesis, and potentially increasing WUE, in practice, higher WUE seems to be only achieved when there are no parallel changes in g s. We conclude that for simultaneous improvement of A N and WUE, genetic manipulation of g m should avoid parallel changes in g s, and we suggest that the appropriate trait for selection for enhanced WUE is increased g m/g s.  相似文献   

13.
The tetrasulfane tBu3Si-S4-SitBu3 was formed in high yield when S2Cl2 was treated with two equivalents of Na(thf)2SSitBu3 in thf. X-ray quality crystals of the tetrasulfane tBu3Si-S4-SitBu3 (monoclinic space group P21/c) were grown from a benzene solution at ambient temperature. UV-induced degradation of [Fe(CO)5] in the presence of the tetrasulfane tBu3Si-S4-SitBu3 led to the formation of the carbonyliron complex [Fe4(μ4−S)2(CO)11].  相似文献   

14.
A revised key-factor analysis was presented for analyzing the temporal changes in the ratio of insect absolute number to plant resource. Ten data sets for 5 insect species were then analyzed. In this key-factor analysis, the key factor is defined as the factor contributing highly to between-year variation inR r , the log rate of the inter-year change of the insect-plant ratio. The yearly change of plant resource was handled as a separate factor, expressed byr pl , log ratio of plant resource in yearn to plant resource in yearn+1. The following was revealed: 1) In 7 of the 10 data sets examined,r pl influenced variations ofR r ; in particular in 3 casesr pl was the main key factor. 2) Generation-to-generation fluctuations of absolute insect densities showed density dependence in 4 cases, while those of insect-plant ratios, in 8 cases. 3) The Royama model or a linear model, explained well the relationship between log insect-plant ratio (X r ) andR r and the relationship betweenX r and log yearly change rate of absolute insect density (R abs ). However, in the 7 cases in whichr pl was a critical factor for variations ofR r , with, increase ofX r ,R r showed a steeper, decrease around the equilibrium point (the point for whichR r is 0) thanR abs . This occurred becauser pl tended to be negatively correlated withX r . Consequently, in two casesX r fluctuated cyclicly or chaotically although without the changes in plant resource, fluctuations ofX r would be damped oscillations approaching equilibrium.  相似文献   

15.
This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl and Mtotal, but Llower did not. Subjects hardly changed Llower under environmental comfort conditions between March and October. This indicates that each of the Tchest, Mtotal, and Lupper was a factor in predicting Icl. Tinnermost might also be a more influential factor than the clothing microclimate temperature.  相似文献   

16.
Phytochrome was examined by immunochemical and spectroscopic techniques to detect differences between the protein moieties of red- and far red-absorbing phytochrome (Pr and Pfr). No differences in the reaction of Pr and Pfr with phytochrome antibody were discernible on Ouchterlony double diffusion plates. However, the microcomplement fixation assay showed a greater degree of antibody reaction with Pfr than with Pr, indicating some difference in the surface characteristics of the two forms. Circular dichroism spectroscopy between 300 and 200 nanometers revealed differences between Pr and Pfr which may reflect differences in the protein conformation. The circular dichroism spectrum of Pr showed a negative band at 285 nanometers which was not present in the spectrum of Pfr, and the large negative circular dichroism band at 222 nanometers with Pfr, associated with the α-helical content, was shifted 2 nanometers to shorter wave length with Pr although there was no change of magnitude of this band. The absorbancy of Pr and Pfr is very nearly the same in the 280 nanometer spectral region, but sensitive difference spectra between Pr and Pfr did reveal spectra which were similar to solvent perturbation spectra obtained by others with different proteins. In total, the experiments indicate that there are conformational differences between the protein moieties of Pr and Pfr but that these differences are rather slight from a standpoint of gross structure.  相似文献   

17.
Peter R. Rich  Derek S. Bendall 《BBA》1980,591(1):153-161
1. In fresh chloroplasts, three b-type cytochromes exist. These are b-559HP (λmax, 559 nm; Em at pH 7, +370 mV; pH-independent Em), b-559LP (λmax, 559 nm; Em at pH 7, +20 mV; pH-independent Em) and b-563 (λmax, 563 nm; Em at pH 7, ?110 mV; pH-independent Em). b-559HP may be converted to a lower potential form (λmax, 559 nm; Em at pH 7, +110 mV; pH-independent Em).2. In catalytically active b-f particle preparations, three cytochromes exist. These are cytochrome f (λmax, 554 nm; Em at pH 7, +375 mV, pK on oxidised cytochrome at pH 9), b-563 (λmax, 563 nm; Em at pH 7, ?90 mV, small pH-dependence of Em) and a b-559 species (λmax, 559 nm, Em at pH 7, +85 mV; pH-independent Em).3. A positive method of demonstration and estimation of b-559LP in fresh chloroplasts is described which involves the use of menadiol as a selective reductant of b-559LP.  相似文献   

18.
The rapidly inactivating (INaf) and noninactivating Na+ currents (INa(NI)) were characterized in NG108-15 neuronal cells differentiated with dibutyryl cyclic AMP in this study. Standard activation and inactivation protocols were used to evaluate the steady-state and kinetic properties of the INaf present in these cells. The voltage protocols with a slowly depolarizing ramp were implemented to examine the properties of INa(NI). Based on experimental data and computer simulations, a window component of the rapidly inactivating sodium current (INaf(W)) was also generated in response to the slowly depolarizing ramp. The INaf(W) was subtracted from INa(NI) to yield the persistent Na+ current (INa(P)). Our results demonstrate the presence of INa(P) in these cells. In addition to modifying the steady-state inactivation of INaf, ranolazine or riluzloe could be effective in blocking INaf(W) and INa(P). The ability of ranolazine and riluzole to suppress INa(P) was greater than their ability to inhibit INaf(W). In current-clamp recordings, current-induced voltage oscillations were applied to elicit action potentials (APs) through a gradual transition between spontaneous depolarization and upstroke. Ranolazine or riluzole at a concentration of 3 μM then effectively suppressed the AP firing generated by oscillatory changes in membrane current. The data suggest that a small rise in INa(NI) facilitates neuronal hyper-excitability due the decreased threshold of AP initiation. The underlying mechanism of the inhibitory actions of ranolazine or riluzole on membrane potential in neurons or neuroendocrine cells in vivo may thus be associated with their blocking of INa(NI).  相似文献   

19.
The average electron thermal energies in the emission flux from the electrode into the plasma, ? 1, and from the plasma toward the electrode, ? 2, are determined for the cases of large and small values of the coefficient of kinetic reflection. It is shown that these energies vary within the ranges 0.5k B T c < ? 1 < 2k B T c and 0.5k B T e < ? 2 < 2k B T e , where T c and T e are the temperatures of the cathode and plasma electrons, respectively. The obtained values can be used to formulate the boundary conditions for the hydrodynamic equations at the electrode or a dielectric wall.  相似文献   

20.
The levels of stomatal, mesophyll and biochemical limitations in CO2 assimilation of ‘Bluecrop’ highbush blueberry leaves were compared at two different levels of leaf water potential. The leaf water potentials were ?1.49 and ?1.94 MPa in daily-irrigated (DI) and non-irrigated (NI) shrubs, respectively. The NI shrubs represented plants under moderate water stress. Mesophyll conductance (g m) and chloroplastic CO2 concentration (C c) were estimated by combined measurements of gas exchange and chlorophyll fluorescence under various intercellular CO2 concentrations (C i). Net CO2 assimilation rates (A n) as a function of C c were used for calculating maximum carboxylation efficiency (α cmax) at the real sites of CO2 assimilation. Maximum A n (A nmax) from the light response curves at 400 μmol mol?1 air of ambient CO2 concentration (C a) were lower in the leaves of NI shrubs than in those of DI ones. However, electron transport rates were higher in the leaves of NI shrubs than in those of DI ones. The decrease in CO2 assimilation following water stress may be caused by a decrease in g m rather than a decrease in stomatal conductance (g s) according to limitation analysis. Limitation rates by g s, calculated at 400 μmol mol?1 air of C a in A n-C i curves, were not significantly different between the leaves of DI and NI shrubs. However, limitation rates by g m from A n-C c curves were significantly higher in the leaves of NI shrubs than in those of DI ones. Maximum carboxylation efficiency (α cmax) values calculated from the A n-C c curve, contrary to those calculated from the A n-C i curve, were higher in the leaves of NI shrubs than in those of DI ones. Consequently, mesophyll limitation than stomatal and biochemical limitations mainly down-regulated the photosynthesis in the leaves of ‘Bluecrop’ blueberry shrubs during moderate water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号