首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Two-Electron Reactions S2QBS0QB and S3QBS1QB are Involved in Deactivation of Higher S States of the Oxygen-Evolving Complex of Photosystem II
Authors:Taras K Antal
Institution:Department of Biology, University of Turku, FI-20014 Turku, Finland
Abstract:The oxygen-evolving complex of Photosystem II cycles through five oxidation states (S0-S4), and dark incubation leads to 25% S0 and 75% S1. This distribution cannot be reached with charge recombination reactions between the higher S states and the electron acceptor QB. We measured flash-induced oxygen evolution to understand how S3 and S2 are converted to lower S states when the electron required to reduce the manganese cluster does not come from QB. Thylakoid samples preconditioned to make the concentration of the S1 state 100% and to oxidize tyrosine YD were illuminated by one or two laser preflashes, and flash-induced oxygen evolution sequences were recorded at various time intervals after the preflashes. The distribution of the S states was calculated from the flash-induced oxygen evolution pattern using an extended Kok model. The results suggest that S2 and S3 are converted to lower S states via recombination from S2QB and S3QB and by a slow change of the state of oxygen-evolving complex from S3 and S2 to S1 and S0 in reactions with unspecified electron donors. The slow pathway appears to contain two-electron routes, S2QBS0QB, and S3QBS1QB. The two-electron reactions dominate in intact thylakoid preparations in the absence of chemical additives. The two-electron reaction was replaced by a one-electron-per-step pathway, S3QBS2QBS1QB in PS II-enriched membrane fragments and in thylakoids measured in the presence of artificial electron acceptors. A catalase effect suggested that H2O2 acts as an electron donor for the reaction S2QBS0QB but added H2O2 did not enhance this reaction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号