首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane.  相似文献   

2.
The role of cAMP and calcium in the induction of ornithine decarboxylase (ODC, E.C.4.1.1.17) activity in the osteogenic sarcoma cell line, UMR 106-01, was studied, with particular interest for parathyroid hormone (PTH). PTH and forskolin dose-dependently induced the ODC activity and the cAMP production. Protein synthesis is involved in the effect of PTH and forskolin on ODC activity but not on cAMP production. Using quin2 we showed that 20 nM PTH and 10 microM forskolin increased the intracellular ionized calcium concentration ([Ca2+]i), thereby offering the possibility for calcium to play a role as cellular mediator in the action of PTH and forskolin in bone. Data obtained with A23187 showed that solely an increase of the [Ca2+]i is not sufficient to stimulate basal or potentiate PTH- and forskolin-induced ODC activity. However, the effects of calcium channel blockers and EGTA on basal and PTH- and forskolin-induced ODC activity point to a specific role for calcium. Moreover, the effects of calcium channel blockers and EGTA on basal and PTH- and forskolin-induced cAMP production indicate that the involvement of calcium in the induction of ODC activity is primarily located at another site than the adenylate cyclase. These data indicate that calcium is involved in the control of basal ODC activity. Furthermore, these data suggest that both cAMP and calcium are involved in the induction of ODC activity by PTH and forskolin. More precisely, ODC activity in UMR 106-01 cells can be induced by PTH and forskolin via a calcium-dependent cAMP messenger system.  相似文献   

3.
Protein composition of membrane domains prepared by three different procedures (mechanical homogenization, alkaline treatment with 1 M Na2CO3[pH 11.0], or extraction with nonionic detergent Triton X-100), and isolated from the bulk of plasma membranes by flotation on equilibrium sucrose density gradients, was analyzed by two-dimensional (2D) electrophoresis and compared in preparations from control (quiescent) and agonist-stimulated human embryonic kidney cells (HEK)293 or S49 cells. HEK293 cells (clone e2m11) stably expressing high levels of thyrotropin-releasing hormone receptor and G11α protein were stimulated by thyrotropin-releasing hormone and S49 lymphoma cells by the β-adrenergic receptor agonist isoprenaline. Whereas sustained exposure (16h) of both cell lines to the appropriate hormones led to substantial cellular redistribution and downregulation of the cognate G proteins (Gqα/G11α and Gsα, respectively), the distribution and levels of nonstimulated Gi proteins remained unchanged. The 2D electrophoretic analysis of membrane domains distinguished approx 150–170 major proteins in these structures and none of these proteins was significantly altered by prolonged agonist stimulation. Furthermore, specific immunochemical determination of a number of plasma membrane markers, including transmembrane and glycosyl-phosphatidylinositol-anchored peripheral proteins, confirmed that their detergent-extractability/solubility was not influenced by hormone treatment. Collectively, our present data indicate that sustained hormone stimulation of target cells does not alter the basic protein composition of membrane domain/raft compartments of the plasma membrane in spite of marked changes proceeding in a given signaling cascade.  相似文献   

4.
The generation of cAMP by G protein-coupled receptors (GPCRs) and its termination are currently thought to occur exclusively at the plasma membrane of cells. Under existing models of receptor regulation, this signal is primarily restricted by desensitization of the receptors through their binding to β-arrestins. However, this paradigm is not consistent with recent observations that the parathyroid hormone receptor type 1 (PTHR) continues to stimulate cAMP production even after receptor internalization, as β-arrestins are known to rapidly bind and internalize activated PTHR. Here we show that binding to β-arrestin1 prolongs rather than terminates the generation of cAMP by PTHR, and that cAMP generation correlates with the persistence of arrestin-receptor complexes on endosomes. PTHR signaling is instead turned off by the retromer complex, which regulates the movement of internalized receptor from endosomes to the Golgi apparatus. Thus, binding by the retromer complex regulates the sustained generation of cAMP triggered by an internalized GPCR.  相似文献   

5.
The GnRH receptor is coupled to G proteins of the families Gq and G11. Gq and G11 coupling leads to intracellular signaling through the phospholipase C pathway. GnRHR coupling to other G proteins is controversial. This study provides evidence that G protein families Gs, Gi, Gq and G11 complete for binding with the GnRHR. We quantified interactions of over-expressed G proteins with GnRHR by a competitive binding approach, using measurements of second messengers, IP and cAMP. Transient co-transfection of HEK293 cells with human WT GnRHR and with stimulatory and inhibitory G proteins (Gq, G11 and Gs, Gi) led to either production or inhibition of total inositol phosphate (IP) production, depending on the G protein that was over-expressed. Studies were conducted in different human (COS7, HeLa) and rodent-derived (CHO-K1, GH3) cell lines in order to confirm that G protein promiscuity observed with the GnRHR was not limited to a particular cell type.  相似文献   

6.
Neurobiological actions of ethanol have been linked to perturbations in cyclic AMP (cAMP)-dependent signaling processes. Chronic ethanol exposure leads to desensitization of cAMP production in response to physiological ligands (heterologous desensitization). Ethanol-induced alterations in neuronal expression of G proteins G(s) and G(i) have been invoked as a cause of heterologous desensitization. However, effects of ethanol on G protein expression vary considerably among different experimental protocols, various brain regions and diverse neuronal cell types. Dynamic palmitoylation of G protein alpha subunits is critical for membrane localization and protein-protein interactions, and represents a regulatory feature of G protein function. We studied the effect of ethanol on G alpha(s) palmitoylation. In NG108-15 rat neuroblastoma x glioma hybrid cells, acute exposure to pharmacologically relevant concentrations of ethanol (25-100 mm) inhibited basal and prostaglandin E1-stimulated incorporation of palmitate into G alpha(s). Exposure of NG108-15 cells to ethanol for 72 h induced a shift in G alpha(s) to its non-palmitoylated state, coincident with an inhibition of prostaglandin E1-induced cAMP production. Both parameters were restored following 24 h of ethanol withdrawal. Chronic ethanol exposure also induced the depalmitoylation of G alpha(s) in human embryonic kidney (HEK)293 cells that overexpress wild-type G alpha(s) and caused heterologous desensitization of adenylyl cyclase. By contrast, HEK293 cells that express a non-palmitoylated mutant of G alpha(s) were insensitive to heterologous desensitization after chronic ethanol exposure. In summary, the findings identify a novel effect of ethanol on post-translational lipid modification of G alpha(s), and represent a mechanism by which ethanol might affect adenylyl cyclase activity.  相似文献   

7.
The present studies were carried out to evaluate the mechanisms by which PTH/PTHrP receptor (PTHR) activation influences cell viability. In 293 cells expressing recombinant PTHRs, PTH treatment markedly reduced the number of viable cells. This effect was associated with a marked apoptotic response including DNA fragmentation and the appearance of apoptotic nuclei. Similar effects were evidenced in response to serum withdrawal or to the addition of tumor necrosis factor (TNFalpha). Addition of caspase inhibitors or overexpression of bcl-2 partially abrogated apoptosis induced by serum withdrawal. Caspase inhibitors also protected cells from PTH-induced apoptosis, but overexpression of bcl-2 did not. The effects of PTH on cell number and apoptosis were neither mimicked by activators of the cAMP pathway (forskolin, isoproterenol) nor blocked by an inhibitor (H-89). However, elevation of Ca(i)2+ by addition of thapsigargin induced rapid apoptosis, and suppression of Ca(i)2+ by overexpression of the calcium- binding protein, calbindin D28k, inhibited PTH-induced apoptosis. The protein kinase C inhibitor GF 109203X partially inhibited PTH-induced apoptosis. Regulator of G protein signaling 4 (RGS4) (an inhibitor of the activity of the alpha-subunit of Gq) suppressed apoptotic signaling by the PTHR, whereas the C-terminal fragment of GRK2 (an inhibitor of the activity of the beta(gamma)-subunits of G proteins) was without effect. Chemical mutagenesis allowed selection of a series of 293 cell lines resistant to the apoptotic actions of PTH; a subset of these were also resistant to TNFalpha. These results suggest that 1) apoptosis produced by PTHR and TNF receptor signaling involve converging pathways; and 2) Gq-mediated phospholipase C/Ca2+ signaling, rather than Gs-mediated cAMP signaling, is required for the apoptotic effects of PTHR activation.  相似文献   

8.
Regulator of G Protein Signalling (RGS) proteins impede heterotrimeric G protein signalling. RGS2 decreases cAMP production and appears to interact with both adenylyl cyclase (AC) and its stimulatory G protein Gs. We showed previously that Green Fluorescent Protein-tagged RGS2 (GFP-RGS2) localizes to the nucleus in HEK 293 cells and is recruited to the plasma membrane when co-expressed with Gsalpha, or the Gs-coupled beta2-adrenergic receptor (beta2AR). Here, using confocal microscopy we show that co-expression of various AC isoforms (ACI, ACII, ACV, ACVI) also leads to GFP-RGS2 recruitment to the plasma membrane. Bioluminescence Resonance Energy Transfer (BRET) was also used to examine physical interactions between RGS2 and components of the Gs-signalling pathway. A BRET signal was detected between fusion constructs of RGS2-Renilla luciferase (energy donor) and Gsalpha-GFP (energy acceptor) co-expressed in HEK 293 cells. BRET was also observed between GFP-RGS2 and ACII or ACVI fused to Renilla luciferase. Additionally, RGS2 was found to interact with the beta2AR. Purified RGS2 selectively bound to the third intracellular loop of the beta2AR in GST pulldown assays, and a BRET signal was observed between GFP-RGS2 and beta2AR fused to Renilla luciferase when these two proteins were co-expressed together with either ACIV or ACVI. This interaction was below the limit of detection in the absence of co-expressed AC, suggesting that the effector enzyme stabilized or promoted binding between the receptor and the RGS protein inside the cell. Taken together, these results suggest the possibility that RGS2 might bind to a receptor-G protein-effector signalling complex to regulate Gs-dependent cAMP production.  相似文献   

9.
Murine models indicate that Gαs and its extra-long variant XLαs, both of which are derived from GNAS, markedly differ regarding their cellular actions, but these differences are unknown. Here we investigated activation-induced trafficking of Gαs and XLαs, using immunofluorescence microscopy, cell fractionation, and total internal reflection fluorescence microscopy. In transfected cells, XLαs remained localized to the plasma membrane, whereas Gαs redistributed to the cytosol after activation by GTPase-inhibiting mutations, cholera toxin treatment, or G protein-coupled receptor agonists (isoproterenol or parathyroid hormone (PTH)(1-34)). Cholera toxin treatment or agonist (isoproterenol or pituitary adenylate cyclase activating peptide-27) stimulation of PC12 cells expressing Gαs and XLαs endogenously led to an increased abundance of Gαs, but not XLαs, in the soluble fraction. Mutational analyses revealed two conserved cysteines and the highly charged domain as being critically involved in the plasma membrane anchoring of XLαs. The cAMP response induced by M-PTH(1-14), a parathyroid hormone analog, terminated quickly in HEK293 cells stably expressing the type 1 PTH/PTH-related peptide receptor, whereas the response remained maximal for at least 6 min in cells that co-expressed the PTH receptor and XLαs. Although isoproterenol-induced cAMP response was not prolonged by XLαs expression, a GTPase-deficient XLαs mutant found in certain tumors and patients with fibrous dysplasia of bone and McCune-Albright syndrome generated more basal cAMP accumulation in HEK293 cells and caused more severe impairment of osteoblastic differentiation of MC3T3-E1 cells than the cognate Gαs mutant (gsp oncogene). Thus, activated XLαs and Gαs traffic differently, and this may form the basis for the differences in their cellular actions.  相似文献   

10.
After stimulation with agonist, G protein-coupled receptors (GPCRs) activate G proteins and become phosphorylated by G protein-coupled receptor kinases (GRKs), and most of them translocate cytosolic arrestin proteins to the cytoplasmic membrane. Agonist-activated GPCRs are specifically phosphorylated by GRKs and are targeted for endocytosis by arrestin proteins, suggesting a connection between GPCR conformational changes and interaction with GRKs and arrestins. Previously, we showed that by substitution of histidine for residues at the cytoplasmic side of helix 3 (H3) and helix 6 (H6) of the parathyroid hormone (PTH) receptor (PTHR), a zinc metal ion-binding site is engineered that prevents PTH-stimulated G(s) activation (Sheikh, S. P., Vilardaga, J.-P., Baranski, T. J., Lichtarge, O., Iiri, T., Meng, E. C., Nissenson, R. A., and Bourne, H. R. (1999) J. Biol. Chem. 274, 17033-17041). These data suggest that relative movements between H3 and H6 are critical for G(s) activation. Does this molecular event play a similar role in activation of GRK and arrestin and in PTHR-mediated G(q) activation? To answer this question, we utilized the two previously described mutant forms of PTHR, H401 and H402, which contain a naturally present histidine residue at position 301 in H3 and a second substituted histidine residue at positions 401 and 402 in H6, respectively. Both mutant receptors showed inhibition of PTH-stimulated inositol phosphate and cAMP generation in the presence of increasing concentrations of Zn(II). However, the mutants showed no Zn(II)-dependent impairment of phosphorylation by GRK-2. Likewise, the mutants were indistinguishable from wild-type PTHR in the ability to translocate beta-arrestins/green fluorescent protein to the cell membrane and were also not affected by sensitivity to Zn(II). These results suggest that agonist-mediated phosphorylation and internalization of PTHR require conformational switches of the receptor distinct from the cAMP and inositol phosphate signaling state. Furthermore, PTHR sequestration does not appear to require G protein activation.  相似文献   

11.
Spatially restricting cAMP production to discrete subcellular locations permits selective regulation of specific functional responses. But exactly where and how cAMP signaling is confined is not fully understood. Different receptors and adenylyl cyclase isoforms responsible for cAMP production are not uniformly distributed between lipid raft and non-lipid raft domains of the plasma membrane. We sought to determine the role that these membrane domains play in organizing cAMP responses in HEK293 cells. The freely diffusible FRET-based biosensor Epac2-camps was used to measure global cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. Disruption of lipid rafts by cholesterol depletion selectively altered cAMP responses produced by raft-associated receptors. The results indicate that receptors associated with lipid raft as well as non-lipid raft domains can contribute to global cAMP responses. In addition, basal cAMP activity was found to be significantly higher in non-raft domains. This was supported by the fact that pharmacologic inhibition of adenylyl cyclase activity reduced basal cAMP activity detected by Epac2-CAAX but not Epac2-MyrPalm or Epac2-camps. Responses detected by Epac2-CAAX were also more sensitive to direct stimulation of adenylyl cyclase activity, but less sensitive to inhibition of phosphodiesterase activity. Quantitative modeling was used to demonstrate that differences in adenylyl cyclase and phosphodiesterase activities are necessary but not sufficient to explain compartmentation of cAMP associated with different microdomains of the plasma membrane.  相似文献   

12.
Proton-sensing G-protein-coupled receptors (GPCRs; OGR1, GPR4, G2A, TDAG8), with full activation at pH 6.4 ~ 6.8, are important to pH homeostasis, immune responses and acid-induced pain. Although G2A mediates the G13-Rho pathway in response to acid, whether G2A activates Gs, Gi or Gq proteins remains debated. In this study, we examined the response of this fluorescence protein-tagged OGR1 family to acid stimulation in HEK293T cells. G2A did not generate detectable intracellular calcium or cAMP signals or show apparent receptor redistribution with moderate acid (pH?≥?6.0) stimulation but reduced cAMP accumulation under strong acid stimulation (pH?≤?5.5). Surprisingly, coexpression of OGR1- and G2A-enhanced proton sensitivity and proton-induced calcium signals. This alteration is attributed to oligomerization of OGR1 and G2A. The oligomeric potential locates receptors at a specific site, which leads to enhanced proton-induced calcium signals through channels.  相似文献   

13.
Olfaction in Drosophila is mediated by a large family of membrane-bound odorant receptor proteins (Ors). In heterologous cells, we investigated whether the structural features and signalling mechanisms of ligand-binding Drosophila Ors are consistent with them being G protein-coupled receptors (GPCRs). The detailed membrane topology of Or22a was determined by inserting epitope tags into the termini and predicted loop regions. Immunocytochemistry experiments in Drosophila S2 cells imply that Or22a has seven transmembrane domains but that its membrane topology is opposite to that of GPCRs, with a cytoplasmic N-terminus and extracellular C-terminus. To investigate Or signalling mechanisms, we expressed Or43b in Sf9 and HEK293 cells, and show that inhibitors of heterotrimeric G proteins (GDP-beta-S), adenylate cyclase (SQ22536), guanylyl cyclase (ODQ), cyclic nucleotide phosphodiesterases (IBMX) and phospholipase C (U73122) have negligible impact on Or43b responses. Whole cell patching of Or43b/Or83b-transfected HEK293 cells revealed the opening of plasma membrane cation channels on addition of ligand. The response was blocked by lanthanum and by 2-APB, but not by Ruthenium red or SKF96365. Based on these data, we conclude that Drosophila Ors comprise a novel family of seven transmembrane receptors that in HEK293 cells signal by opening cation channels, through a mechanism that is largely independent of G proteins.  相似文献   

14.
G(s) is a heterotrimeric (alpha, beta, and gamma chains) G protein that couples heptahelical plasma membrane receptors to stimulation of adenylyl cyclase. Inactivation of one GNAS1 gene allele encoding the alpha chain of G(s) (G alpha(s)) causes pseudohypoparathyroidism type Ia. Affected subjects have resistance to parathyroid hormone (PTH) and other hormones that activate adenylyl cyclase plus somatic features termed Albright hereditary osteodystrophy. By contrast, subjects with pseudohypoparathyroidism type Ib have hormone resistance that is limited to PTH and lack Albright hereditary osteodystrophy. The molecular basis for pseudohypoparathyroidism type Ib is unknown. We analyzed the GNAS1 gene for mutations using polymerase chain reaction to amplify genomic DNA from three brothers with pseudohypoparathyroidism type Ib. We identified a novel heterozygous 3-base pair deletion causing loss of isoleucine 382 in the three affected boys and their clinically unaffected mother and maternal grandfather. This mutation was absent in other family members and 15 additional unrelated subjects with pseudohypoparathyroidism type Ib. To characterize the signaling properties of the mutant G alpha(s), we used site-directed mutagenesis to introduce the isoleucine 382 deletion into a wild type G alpha(s) cDNA, transfected HEK293 cells with either wild type or mutant G alpha(s) cDNA, plus cDNAs encoding heptahelical receptors for PTH, thyrotropic hormone, or luteinizing hormone, and we measured cAMP production in response to hormone stimulation. The mutant G alpha(s) protein was unable to interact with the receptor for PTH but showed normal coupling to the other coexpressed heptahelical receptors. These results provide evidence of selective uncoupling of the mutant G alpha(s) from PTH receptors and explain PTH-specific hormone resistance in these three brothers with pseudohypoparathyroidism type Ib. The absence of PTH resistance in the mother and maternal grandfather who carry the same mutation is consistent with current models of paternal imprinting of the GNAS1 gene.  相似文献   

15.
We here present an improved and simplified assay to study signal transduction of the Gs class of G protein-coupled receptors (GPCRs). The assay is based on a single plasmid combining the genes for any Gs protein-coupled GPCR and the cAMP response element-related expression of enhanced yellow fluorescent protein. On transfection, stable human embryonic kidney 293 (HEK293) cell lines presented high assay sensitivity and an unprecedented signal-to-noise ratio of up to 300, even in the absence of trichostatin A. The robustness of the assay was demonstrated through the cloning of reporter gene cell lines with melanocortin 4 receptor (MC4R), the human type I pituitary adenylate cyclase-activating polypeptide receptor (hPAC1), and the two vasoactive intestinal peptide receptors (VPAC1 and VPAC2).  相似文献   

16.
Recent findings necessitate revision of the traditional view of G protein‐coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either stimulate or inhibit cAMP production in a sustained manner. They do so by remaining associated with their cognate G protein subunit and adenylyl cyclase at endosomal compartments. Once internalized, the GPCRs produce cellular responses distinct from those elicited at the cell surface.  相似文献   

17.
The intracellular second messenger cyclic AMP (cAMP) is degraded by phosphodiesterases (PDE). The knowledge of individual families and subtypes of PDEs is considerable, but how the different PDEs collaborate in the cell to control a cAMP signal is still not fully understood. In order to investigate compartmentalized cAMP signaling, we have generated a membrane-targeted variant of the cAMP Bioluminiscence Resonance Energy Transfer (BRET) sensor CAMYEL and have compared intracellular cAMP measurements with it to measurements with the cytosolic BRET sensor CAMYEL in HEK293 cells. With these sensors we observed a slightly higher cAMP response to adenylyl cyclase activation at the plasma membrane compared to the cytosol, which is in accordance with earlier results from Fluorescence Resonance Energy Transfer (FRET) sensors. We have analyzed PDE activity in fractionated lysates from HEK293 cells using selective PDE inhibitors and have identified PDE3 and PDE10A as the major membrane-bound PDEs and PDE4 as the major cytosolic PDE. Inhibition of membrane-bound or cytosolic PDEs can potentiate the cAMP response to adenylyl cyclase activation, but we see no significant difference between the potentiation of the cAMP response at the plasma membrane and in cytosol when membrane-bound and cytosolic PDEs are inhibited. When different levels of stimulation were tested, we found that PDEs 3 and 10 are mainly responsible for cAMP degradation at low intracellular cAMP concentrations, whereas PDE4 is more important for control of cAMP at higher concentrations.  相似文献   

18.
The recovery of PTH receptor (PTHR) function after acute homologous receptor desensitization and down-regulation in bone and kidney cells has been attributed to receptor recycling. To determine the role of receptor dephosphorylation in PTHR recycling, we performed morphological and functional assays on human embryonic kidney 293 cells stably expressing wild-type (wt) or mutant PTHRs. Confocal microscopy and ligand binding assays revealed that the wt PTHR is rapidly recycled back to the plasma membrane after removal of the agonist. Receptors that were engineered to either lack the sites of phosphorylation or to resemble constitutively phosphorylated receptors were able to recycle back to the plasma membrane with the same kinetics as the wt PTHR. The PTHR was found to be dephosphorylated by an enzyme apparently distinct from protein phosphatases 1 or 2A. The PTHR and beta-arrestin-2-green fluorescent protein (GFP) were found to stably colocalize during PTHR internalization, whereas after agonist removal and during receptor recycling, the colocalization slowly disappeared. Experiments using phosphorylation-deficient PTHRs and a dominant-negative form of beta-arrestin showed that beta-arrestin does not regulate the efficiency of PTHR recycling. These studies indicate that, unlike many G protein-coupled receptors, PTHR recycling does not require receptor dephosphorylation or its dissociation from beta-arrestin.  相似文献   

19.
COOH-terminal cytoplasmic domains of G protein-coupled receptors (GPCRs) have been shown to carry determinants that control their cell surface localization, internalization, and recycling. In attempts to seek cellular proteins that mediate these processes of PTH/PTH-related protein receptor (PTHR), one of the class B GPCRs, we have found that Tctex-1, a 14kDa light chain of cytoplasmic dynein motor complex, interacts with the COOH-terminal tail of the receptor. A 34-amino-acid stretch of the receptor responsible for binding to Tctex-1 has a bipartite structure consisting of a motif previously implicated in binding of some proteins to Tctex-1 and a putative new consensus sequence. Site-directed mutations or a 20-amino-acid deletion in the bipartite consensus binding sequence abolished the association of the PTHR COOH terminus with Tctex-1 in vitro. A GFP-fused mutant PTHR impaired in binding to Tctex-1 expressed in MDCK cells showed a decreased rate of internalization in response to PTH compared to that of the wild type.  相似文献   

20.
G-protein-coupled receptors (GPCRs) are an important class of pharmaceutical drug targets. Functional high-throughput GPCR assays are needed to test an increasing number of synthesized novel drug compounds and their function in signal transduction processes. Measurement of changes in the cyclic adenosine monophosphate (cAMP) concentration is a widely used method to verify GPCR activation in the adenylyl cyclase pathway. Here, a single-label time-resolved fluorescence and high-throughput screening (HTS)-feasible method was developed to measure changes in cAMP levels in HEK293(i) cells overexpressing either β(2)-adrenergic or δ-opioid receptors. In the quenching resonance energy transfer (QRET) technique, soluble quenchers reduce the signal of unbound europium(III)-labeled cAMP in solution, whereas the antibody-bound fraction is fluorescent. The feasibility of this homogeneous competitive assay was proven by agonist-mediated stimulation of receptors coupled to either the stimulatory G(s) or inhibitory G(i) proteins. The reproducibility of the assays was excellent, and Z' values exceeded 0.7. The dynamic range, signal-to-background ratio, and detection limit were compared with a commercial time-resolved fluorescence resonance energy transfer (TR-FRET) assay. In both homogeneous assays, similar assay parameters were obtained when adenylyl cyclase was stimulated directly by forskolin or via agonist-mediated activation of the G(s)-coupled β(2)AR. The advantage of using the single-label approach relates to the cost-effectiveness of the QRET system compared with the two-label TR-FRET assay as there is no need for labeling of two binding partners leading to reduced requirements for assay optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号