首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Multiply regulated adenylyl cyclases (AC) and phosphodiesterases (PDE) can yield complex intracellular cAMP signals. Ca2+-sensitive ACs have received far greater attention than the Ca2+/calmodulin-dependent PDE (PDE1) family in governing intracellular cAMP dynamics in response to changes in the cytosolic Ca2+ concentration ([Ca2+]i). Here, we have stably expressed two isoforms of PDE1, PDE1A2 and PDE1C4, in HEK-293 cells to determine whether they exert different impacts on cellular cAMP. Fractionation and imaging showed that both PDEs occurred mainly in the cytosol. However, PDE1A2 and PDE1C4 differed considerably in their ability to hydrolyze cAMP and in their susceptibility to inhibition by the non-selective PDE inhibitor, IBMX and the PDE1-selective inhibitor, MMX. PDE1A2 had an approximately 30-fold greater Km for cAMP than PDE1C4 and yet was more susceptible to inhibition by IBMX and MMX than was PDE1C4. These differences were mirrored in intact cells when thapsigargin-induced capacitative Ca2+ entry (CCE) activated the PDEs. Mirroring their kinetic properties, PDE1C4 was active at near basal cAMP levels, whereas PDE1A2 required agonist-triggered levels of cAMP, produced in response to stimulation of ACs. The effectiveness of IBMX and MMX to inhibit PDE1A2 and PDE1C4 in functional studies was inversely related to their respective affinities for cAMP. To assess the impact of the two isoforms on cAMP dynamics, real-time cAMP measurements were performed in single cells expressing the two PDE isoforms and a fluorescent Epac-1 cAMP biosensor, in response to CCE. These measurements showed that prostaglandin E1-mediated cAMP production was markedly attenuated in PDE1C4-expressing cells upon induction of CCE and cAMP hydrolysis occurred at a faster rate than in cells expressing PDE1A2 under similar conditions. These results prove that the kinetic properties of PDE isoforms play a major role in determining intracellular cAMP signals in response to physiological elevation of [Ca2+]i and thereby provide a rationale for the utility of diverse PDE1 species.  相似文献   

2.
Regulator of G Protein Signalling (RGS) proteins impede heterotrimeric G protein signalling. RGS2 decreases cAMP production and appears to interact with both adenylyl cyclase (AC) and its stimulatory G protein Gs. We showed previously that Green Fluorescent Protein-tagged RGS2 (GFP-RGS2) localizes to the nucleus in HEK 293 cells and is recruited to the plasma membrane when co-expressed with Gsalpha, or the Gs-coupled beta2-adrenergic receptor (beta2AR). Here, using confocal microscopy we show that co-expression of various AC isoforms (ACI, ACII, ACV, ACVI) also leads to GFP-RGS2 recruitment to the plasma membrane. Bioluminescence Resonance Energy Transfer (BRET) was also used to examine physical interactions between RGS2 and components of the Gs-signalling pathway. A BRET signal was detected between fusion constructs of RGS2-Renilla luciferase (energy donor) and Gsalpha-GFP (energy acceptor) co-expressed in HEK 293 cells. BRET was also observed between GFP-RGS2 and ACII or ACVI fused to Renilla luciferase. Additionally, RGS2 was found to interact with the beta2AR. Purified RGS2 selectively bound to the third intracellular loop of the beta2AR in GST pulldown assays, and a BRET signal was observed between GFP-RGS2 and beta2AR fused to Renilla luciferase when these two proteins were co-expressed together with either ACIV or ACVI. This interaction was below the limit of detection in the absence of co-expressed AC, suggesting that the effector enzyme stabilized or promoted binding between the receptor and the RGS protein inside the cell. Taken together, these results suggest the possibility that RGS2 might bind to a receptor-G protein-effector signalling complex to regulate Gs-dependent cAMP production.  相似文献   

3.
Phosphodiesterases (PDEs) catalyze the hydrolysis of the second messengers cAMP and cGMP. However, little is known about how PDE activity regulates cyclic nucleotide signals in vivo because, outside of specialized cells, there are few methods with the appropriate spatial and temporal resolution to measure cyclic nucleotide concentrations. We have previously demonstrated that adenovirus-expressed, olfactory cyclic nucleotide-gated channels provide real-time sensors for cAMP produced in subcellular compartments of restricted diffusion near the plasma membrane (Rich, T.C., K.A. Fagan, H. Nakata, J. Schaack, D.M.F. Cooper, and J.W. Karpen. 2000. J. Gen. Physiol. 116:147-161). To increase the utility of this method, we have modified the channel, increasing both its cAMP sensitivity and specificity, as well as removing regulation by Ca(2)+-calmodulin. We verified the increased sensitivity of these constructs in excised membrane patches, and in vivo by monitoring cAMP-induced Ca(2)+ influx through the channels in cell populations. The improved cAMP sensors were used to monitor changes in local cAMP concentration induced by adenylyl cyclase activators in the presence and absence of PDE inhibitors. This approach allowed us to identify localized PDE types in both nonexcitable HEK-293 and excitable GH4C1 cells. We have also developed a quantitative framework for estimating the K(I) of PDE inhibitors in vivo. The results indicate that PDE type IV regulates local cAMP levels in HEK-293 cells. In GH4C1 cells, inhibitors specific to PDE types I and IV increased local cAMP levels. The results suggest that in these cells PDE type IV has a high K(m) for cAMP, whereas PDE type I has a low K(m) for cAMP. Furthermore, in GH4C1 cells, basal adenylyl cyclase activity was readily observable after application of PDE type I inhibitors, indicating that there is a constant synthesis and hydrolysis of cAMP in subcellular compartments near the plasma membrane. Modulation of constitutively active adenylyl cyclase and PDE would allow for rapid control of cAMP-regulated processes such as cellular excitability.  相似文献   

4.
Phosphodiesterases (PDEs) are hydrolytic enzymes, which convert cyclic AMP (cAMP) and cyclic GMP (cGMP) into their corresponding monophosphates. PDE-dependent hydrolysis shape gradients of these second messengers in cells, which may form the basis of their compartmentation and play a key role in a vast number of physiological and pathological processes. Here, we present a novel approach for real-time monitoring of local cAMP and cGMP levels associated with particular PDEs. We used HEK 293 cells expressing genetic constructs encoding a PDE of interest (PDE3A, PDE4A1 or PDE5A) fused to cAMP and cGMP sensors, which allow to directly visualize changes in cyclic nucleotide concentrations in the vicinity of PDE molecules by fluorescence resonance energy transfer (FRET). FRET was detected by imaging of single cells on 96-well plates and demonstrated specific effects of PDE inhibitors on local cyclic nucleotide levels. In addition, this approach reported physiological regulation of PDE3A activity, its activation by PKA-dependent phosphorylation and inhibition by cGMP. In conclusion, our assay provides a unique and highly sensitive method to analyze PDE activity in living cells. It allows to sense cAMP gradients around particular PDE molecules and to study the pharmacological effects of selective inhibitors on localized cAMP signalling.  相似文献   

5.

Background

We investigated the role of cyclic nucleotide phosphodiesterases (PDEs) in the spatiotemporal control of intracellular cAMP concentrations in rat aortic smooth muscle cells (RASMCs).

Methodology/Principal Findings

The rank order of PDE families contributing to global cAMP-PDE activity was PDE4> PDE3  =  PDE1. PDE7 mRNA expression but not activity was confirmed. The Fluorescence Resonance Energy Transfer (FRET)-based cAMP sensor, Epac1-camps, was used to monitor the time course of cytosolic cAMP changes. A pulse application of the β-adrenoceptor (β-AR) agonist isoproterenol (Iso) induced a transient FRET signal. Both β1- and β2-AR antagonists decreased the signal amplitude without affecting its kinetics. The non-selective PDE inhibitor (IBMX) dramatically increased the amplitude and delayed the recovery phase of Iso response, in agreement with a role of PDEs in degrading cAMP produced by Iso. Whereas PDE1, PDE3 and PDE7 blockades [with MIMX, cilostamide (Cil) and BRL 50481 (BRL), respectively] had no or minor effect on Iso response, PDE4 inhibition [with Ro-20-1724 (Ro)] strongly increased its amplitude and delayed its recovery. When Ro was applied concomitantly with MIMX or Cil (but not with BRL), the Iso response was drastically further prolonged. PDE4 inhibition similarly prolonged both β1- and β2-AR-mediated responses. When a membrane-targeted FRET sensor was used, PDE3 and PDE4 acted in a synergistic manner to hydrolyze the submembrane cAMP produced either at baseline or after β-AR stimulation.

Conclusion/Significance

Our study underlines the importance of cAMP-PDEs in the dynamic control of intracellular cAMP signals in RASMCs, and demonstrates the prominent role of PDE4 in limiting β-AR responses. PDE4 inhibition unmasks an effect of PDE1 and PDE3 on cytosolic cAMP hydrolyzis, and acts synergistically with PDE3 inhibition at the submembrane compartment. This suggests that mixed PDE4/PDE1 or PDE4/PDE3 inhibitors would be attractive to potentiate cAMP-related functions in vascular cells.  相似文献   

6.
Cyclic AMP is a ubiquitous second messenger that coordinates diverse cellular functions. Current methods for measuring cAMP lack both temporal and spatial resolution, leading to the pervasive notion that, unlike Ca(2+), cAMP signals are simple and contain little information. Here we show the development of adenovirus-expressed cyclic nucleotide-gated channels as sensors for cAMP. Homomultimeric channels composed of the olfactory alpha subunit responded rapidly to jumps in cAMP concentration, and their cAMP sensitivity was measured to calibrate the sensor for intracellular measurements. We used these channels to detect cAMP, produced by either heterologously expressed or endogenous adenylyl cyclase, in both single cells and cell populations. After forskolin stimulation, the endogenous adenylyl cyclase in C6-2B glioma cells produced high concentrations of cAMP near the channels, yet the global cAMP concentration remained low. We found that rapid exchange of the bulk cytoplasm in whole-cell patch clamp experiments did not prevent the buildup of significant levels of cAMP near the channels in human embryonic kidney 293 (HEK-293) cells expressing an exogenous adenylyl cyclase. These results can be explained quantitatively by a cell compartment model in which cyclic nucleotide-gated channels colocalize with adenylyl cyclase in microdomains, and diffusion of cAMP between these domains and the bulk cytosol is significantly hindered. In agreement with the model, we measured a slow rate of cAMP diffusion from the whole-cell patch pipette to the channels (90% exchange in 194 s, compared with 22-56 s for substances that monitor exchange with the cytosol). Without a microdomain and restricted diffusional access to the cytosol, we are unable to account for all of the results. It is worth noting that in models of unrestricted diffusion, even in extreme proximity to adenylyl cyclase, cAMP does not reach high enough concentrations to substantially activate PKA or cyclic nucleotide-gated channels, unless the entire cell fills with cAMP. Thus, the microdomains should facilitate rapid and efficient activation of both PKA and cyclic nucleotide-gated channels, and allow for local feedback control of adenylyl cyclase. Localized cAMP signals should also facilitate the differential regulation of cellular targets.  相似文献   

7.
N-terminal tandem GAF domains are present in 5 out of 11 mammalian phosphodiesterase (PDE) families. The ligand for the GAF domains of PDEs 2, 5, and 6 is cGMP, whereas those for PDEs 10 and 11 remained enigmatic for years. Here we used the cyanobacterial cyaB1 adenylyl cyclase, which has an N-terminal tandem GAF domain closely related to those of the mammalian PDEs, as an assay system to identify the ligands for the human PDEs 10 and 11 GAF domains. We report that a chimera between the PDE10 GAF domain and the cyanobacterial cyclase was 9-fold stimulated by cAMP (EC50= 19.8 microm), whereas cGMP had only low activity. cAMP increased Vmax in a non-cooperative manner and did not affect the Km for ATP of 27 microm. In an analogous chimeric construct with the tandem GAF domain of human PDE11A4, cGMP was identified as an allosteric activator (EC50 = 72.5 microm) that increased Vmax of the cyclase non-cooperatively 4-fold. GAF-B of PDE10 and GAF-A of PDE11A4 contain an invariant NKFDE motif present in all mammalian PDE GAF ensembles. We mutated the aspartates within this motif in both regions and found that intramolecular signaling was considerably reduced or abolished. This was in line with all data concerning GAF domains with an NKFDE motif as far as they have been tested. The data appeared to define those GAF domains as a distinct subclass within the >3100 annotated GAF domains for which we propose a tentative classification scheme.  相似文献   

8.
The superfamily of cyclic nucleotide phosphodiesterases is comprised of 11 gene families. By hydrolyzing cAMP and cGMP, PDEs are major determinants in the regulation of intracellular concentrations of cyclic nucleotides and cyclic nucleotide-dependent signaling pathways. Two PDE3 subfamilies, PDE3A and PDE3B, have been described. PDE3A and PDE3B hydrolyze cAMP and cGMP with high affinity in a mutually competitive manner and are regulators of a number of important cAMP- and cGMP-mediated processes. PDE3B is relatively more highly expressed in cells of importance for the regulation of energy homeostasis, including adipocytes, hepatocytes, and pancreatic β-cells, whereas PDE3A is more highly expressed in heart, platelets, vascular smooth muscle cells, and oocytes. Major advances have been made in understanding the different physiological impacts and biochemical basis for recruitment and subcellular localizations of different PDEs and PDE-containing macromolecular signaling complexes or signalosomes. In these discrete compartments, PDEs control cyclic nucleotide levels and regulate specific physiological processes as components of individual signalosomes which are tethered at specific locations and which contain PDEs together with cyclic nucleotide-dependent protein kinases (PKA and PKG), adenylyl cyclases, Epacs (guanine nucleotide exchange proteins activated by cAMP), phosphoprotein phosphatases, A-Kinase anchoring proteins (AKAPs), and pathway-specific regulators and effectors. This article highlights the identification of different PDE3A- and PDE3B-containing signalosomes in specialized subcellular compartments, which can increase the specificity and efficiency of intracellular signaling and be involved in the regulation of different cAMP-mediated metabolic processes.  相似文献   

9.
Cyclic nucleotides are recognized as critical mediators of many renal functions, including solute transport, regulation of vascular tone, proliferation of parenchymal cells, and inflammation. Although most studies have linked elevated cAMP levels to activation of protein kinase A, cAMP can also directly activate cyclic nucleotide gated ion channels and can signal through activation of GTP exchange factors. Cyclic AMP signaling is highly compartmentalized through plasma membrane localization of adenylyl cyclase and expression of scaffolding proteins that anchor protein kinase A to specific intracellular locations. Cyclic nucleotide levels are largely regulated through catabolic processes directed by phosphodiesterases (PDEs). The PDE superfamily is large and complex, with over 60 distinct isoforms that preferentially hydrolyze cAMP, cGMP, or both. PDEs contribute to compartmentalized cyclic nucleotide signaling. The unique cell- and tissue-specific distribution of PDEs has prompted the development of highly specific PDE inhibitors to treat a variety of inflammatory conditions. In experimental systems, PDE inhibitors have been employed to demonstrate functional compartmentalization of cyclic nucleotide signaling in the kidney. For example, mitogenesis in glomerular mesangial cells and normal tubular epithelial cells is negatively regulated by an intracellular pool of cAMP that is metabolized by PDE3, but not by other PDEs. In Madin-Darby canine kidney cells, an in vitro model of polycystic kidney disease, an intracellular pool of cAMP directed by PDE3 stimulates mitogenesis. In mesangial cells, an intracellular pool of cAMP directed by PDE4 inhibits reactive oxygen species and expression of the potent proin-flammatory cytokine monocyte chemoattractant protein 1. An intracellular pool of cGMP directed by PDE5 regulates solute transport. PDE5 inhibitors ameliorate renal injury in a chronic renal disease model. In this overview, we highlight recent studies to define relationships between PDE expression and renal function and to provide evidence that PDE inhibitors may be effective agents in treating chronic renal disease.  相似文献   

10.
The production of cAMP is controlled on many levels, notably at the level of cAMP synthesis by the enzyme adenylyl cyclase. We have recently identified a new regulator of adenylyl cyclase activity, RGS2, which decreases cAMP accumulation when overexpressed in HEK293 cells and inhibits the in vitro activity of types III, V, and VI adenylyl cyclase. In addition, RGS2 blocking antibodies lead to elevated cAMP levels in olfactory neurons. Here we examine the nature of the interaction between RGS2 and type V adenylyl cyclase. In HEK293 cells expressing type V adenylyl cyclase, RGS2 inhibited Galpha(s)-Q227L- or beta(2)-adrenergic receptor-stimulated cAMP accumulation. Deletion of the N-terminal 19 amino acids of RGS2 abolished its ability to inhibit cAMP accumulation and to bind adenylyl cyclase. Further mutational analysis indicated that neither the C terminus, RGS GAP activity, nor the RGS box domain is required for inhibition of adenylyl cyclase. Alanine scanning of the N-terminal amino acids of RGS2 identified three residues responsible for the inhibitory function of RGS2. Furthermore, we show that RGS2 interacts directly with the C(1) but not the C(2) domain of type V adenylyl cyclase and that the inhibition by RGS2 is independent of inhibition by Galpha(i). These results provide clear evidence for functional effects of RGS2 on adenylyl cyclase activity that adds a new dimension to an intricate signaling network.  相似文献   

11.
We have found that a 12-lipoxygenase metabolite of arachidonic acid, 12(S)-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12-HETE), induces cAMP production in human normal fibroblast TIG-1 cells. This phenomenon was not observed in other cells tested including human embryonic kidney HEK293 cells. We have speculated that this specific response might be influenced by the kinds of isoform of adenylyl cyclase (AC) present in cells. We found that TIG-1 cells specifically expressed type VIII AC. As type VIII AC is known to be activated by an increase of calcium concentration, we determined the change of intracellular Ca2+ concentration after the addition of 12-HETE. It was elevated not only in TIG-1 cells, but also HEK293 cells, which did not respond to 12-HETE to produce cAMP. The addition of a calcium ionophore elevated the concentration of intracellular cAMP in TIG-1 cells, but it was without effect in HEK293 cells. To show that the expression of this particular isoform of AC is responsible for the positive response to 12-HETE, we transfected this AC isoform into HEK293 cells. The type VIII AC-transfected cells, in contrast to the mock-transfected ones, became very responsive to 12-HETE to produce cAMP. Taken all together the data would strongly suggest that 12-HETE specifically activates type VIII AC via increasing intracellular Ca2+ concentration.  相似文献   

12.
Mitochondria are central organelles in cellular energy metabolism, apoptosis, and aging processes. A signaling network regulating these functions was recently shown to include soluble adenylyl cyclase as a local source of the second messenger cAMP in the mitochondrial matrix. However, a mitochondrial cAMP-degrading phosphodiesterase (PDE) necessary for switching off this cAMP signal has not yet been identified. Here, we describe the identification and characterization of a PDE2A isoform in mitochondria from rodent liver and brain. We find that mitochondrial PDE2A is located in the matrix and that the unique N terminus of PDE2A isoform 2 specifically leads to mitochondrial localization of this isoform. Functional assays show that mitochondrial PDE2A forms a local signaling system with soluble adenylyl cyclase in the matrix, which regulates the activity of the respiratory chain. Our findings complete a cAMP signaling cascade in mitochondria and have implications for understanding the regulation of mitochondrial processes and for their pharmacological modulation.  相似文献   

13.
14.
Increases in the second messenger cAMP are associated with receptor-mediated ATP release from erythrocytes. In other signaling pathways, cAMP-specific phosphodiesterases (PDEs) hydrolyze this second messenger and thereby limit its biological actions. Although rabbit and human erythrocytes possess adenylyl cyclase and synthesize cAMP, their PDE activity is poorly characterized. It was reported previously that the prostacyclin analog iloprost stimulated receptor-mediated increases in cAMP in rabbit and human erythrocytes. However, the PDEs that hydrolyze erythrocyte cAMP synthesized in response to iloprost were not identified. PDE3 inhibitors were reported to augment increases in cAMP stimulated by prostacyclin analogs in platelets and pulmonary artery smooth muscle cells. Additionally, PDE3 activity was identified in embryonic avian erythrocytes, but the presence of this PDE in mammalian erythrocytes has not been investigated. Here, using Western blot analysis, we determined that PDE3B is a component of rabbit and human erythrocyte membranes. In addition, we report that the preincubation of rabbit and human erythrocytes with the PDE3 inhibitors milrinone and cilostazol potentiates iloprost-induced increases in cAMP. In addition, cilostamide, the parent compound of cilostazol, potentiated iloprost-induced increases in cAMP in human erythrocytes. These findings demonstrate that PDE3B is present in rabbit and human erythrocytes and are consistent with the hypothesis that PDE3 activity regulates cAMP levels associated with a signaling pathway activated by iloprost in these cells.  相似文献   

15.
Cyclic nucleotide phosphodiesterases (PDEs) catalyze the degradation of the cyclic nucleotides cAMP and cGMP, which are important second messengers. Five of the 11 mammalian PDE families have tandem GAF domains at their N termini. PDE10A may be the only mammalian PDE for which cAMP is the GAF domain ligand, and it may be allosterically stimulated by cAMP. PDE10A is highly expressed in striatal medium spiny neurons. Here we report the crystal structure of the C-terminal GAF domain (GAF-B) of human PDE10A complexed with cAMP at 2.1-angstroms resolution. The conformation of the PDE10A GAF-B domain monomer closely resembles those of the GAF domains of PDE2A and the cyanobacterium Anabaena cyaB2 adenylyl cyclase, except for the helical bundle consisting of alpha1, alpha2, and alpha5. The PDE10A GAF-B domain forms a dimer in the crystal and in solution. The dimerization is mainly mediated by hydrophobic interactions between the helical bundles in a parallel arrangement, with a large buried surface area. In the PDE10A GAF-B domain, cAMP tightly binds to a cNMP-binding pocket. The residues in the alpha3 and alpha4 helices, the beta6 strand, the loop between 3(10) and alpha4, and the loop between alpha4 and beta5 are involved in the recognition of the phosphate and ribose moieties. This recognition mode is similar to those of the GAF domains of PDE2A and cyaB2. In contrast, the adenine base is specifically recognized by the PDE10A GAF-B domain in a unique manner, through residues in the beta1 and beta2 strands.  相似文献   

16.
We describe here a novel sensor for cGMP based on the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase 5 (PDE5) using bioluminescence resonance energy transfer (BRET). The wild type GAFa domain, capable of binding cGMP with high affinity, and a mutant (GAFa F163A) unable to bind cGMP were cloned as fusions between GFP and Rluc for BRET (2) assays. BRET (2) ratios of the wild type GAFa fusion protein, but not GAFa F163A, increased in the presence of cGMP but not cAMP. Higher basal BRET (2) ratios were observed in cells expressing the wild type GAFa domain than in cells expressing GAFa F163A. This was correlated with elevated basal intracellular levels of cGMP, indicating that the GAF domain could act as a sink for cGMP. The tandem GAF domains in full length PDE5 could also sequester cGMP when the catalytic activity of PDE5 was inhibited. Therefore, these results describe a cGMP sensor utilizing BRET (2) technology and experimentally demonstrate the reservoir of cGMP that can be present in cells that express cGMP-binding GAF domain-containing proteins. PDE5 is the target for the anti-impotence drug sildenafil citrate; therefore, this GAF-BRET (2) sensor could be used for the identification of novel compounds that inhibit cGMP binding to the GAF domain, thereby regulating PDE5 catalytic activity.  相似文献   

17.
Cyclic AMP (cAMP) and its main effector Protein Kinase A (PKA) are critical for several aspects of neuronal function including synaptic plasticity. Specificity of synaptic plasticity requires that cAMP activates PKA in a highly localized manner despite the speed with which cAMP diffuses. Two mechanisms have been proposed to produce localized elevations in cAMP, known as microdomains: impeded diffusion, and high phosphodiesterase (PDE) activity. This paper investigates the mechanism of localized cAMP signaling using a computational model of the biochemical network in the HEK293 cell, which is a subset of pathways involved in PKA-dependent synaptic plasticity. This biochemical network includes cAMP production, PKA activation, and cAMP degradation by PDE activity. The model is implemented in NeuroRD: novel, computationally efficient, stochastic reaction-diffusion software, and is constrained by intracellular cAMP dynamics that were determined experimentally by real-time imaging using an Epac-based FRET sensor (H30). The model reproduces the high concentration cAMP microdomain in the submembrane region, distinct from the lower concentration of cAMP in the cytosol. Simulations further demonstrate that generation of the cAMP microdomain requires a pool of PDE4D anchored in the cytosol and also requires PKA-mediated phosphorylation of PDE4D which increases its activity. The microdomain does not require impeded diffusion of cAMP, confirming that barriers are not required for microdomains. The simulations reported here further demonstrate the utility of the new stochastic reaction-diffusion algorithm for exploring signaling pathways in spatially complex structures such as neurons.  相似文献   

18.
Three isoforms of PDE3 (cGMP-inhibited) cyclic nucleotide phosphodiesterase regulate cAMP content in different intracellular compartments of cardiac myocytes in response to different signals. We characterized the catalytic activity and inhibitor sensitivity of these isoforms by using recombinant proteins. We determined their contribution to cAMP hydrolysis in cytosolic and microsomal fractions of human myocardium at 0.1 and 1.0 microm cAMP in the absence and presence of Ca(2+)/calmodulin. We examined the effects of cGMP on cAMP hydrolysis in these fractions. PDE3A-136, PDE3A-118, and PDE3A-94 have similar K(m) and k(cat) values for cAMP and are equal in their sensitivities to inhibition by cGMP and cilostazol. In microsomes, PDE3A-136, PDE3A-118, and PDE3A-94 comprise the majority of cAMP hydrolytic activity under all conditions. In cytosolic fractions, PDE3A-118 and PDE3A-94 comprise >50% of the cAMP hydrolytic activity at 0.1 microm cAMP, in the absence of Ca(2+)/calmodulin. At 1.0 microm cAMP, in the presence of Ca(2+)/calmodulin, activation of Ca(2+)/calmodulin-activated (PDE1) and other non-PDE3 phosphodiesterases reduces their contribution to <20% of cAMP hydrolytic activity. cGMP inhibits cAMP hydrolysis in microsomal fractions by inhibiting PDE3 and in cytosolic fractions by inhibiting both PDE3 and PDE1. These findings indicate that the contribution of PDE3 isoforms to the regulation of cAMP hydrolysis in intracellular compartments of human myocardium and the effects of PDE3 inhibition on cAMP hydrolysis in these compartments are highly dependent on intracellular [Ca(2+)] and [cAMP], which are lower in failing hearts than in normal hearts. cGMP may amplify cAMP-mediated signaling in intracellular compartments of human myocardium by PDE3-dependent and PDE3-independent mechanisms.  相似文献   

19.
Phosphodiesterases (PDEs) constitute a superfamily of enzymes that plays an important role in signal transduction by catalysing the hydrolysis of cAMP and cGMP. cDNA encoding PDE7A1 subtype was cloned and a stable recombinant HEK 293 cell line expressing high levels of PDE7A1 was generated. Transient transfection of pCRE-Luc plasmid, harboring luciferase reporter gene into the stable recombinant cell line and subsequent treatment with PDE7 inhibitor, resulted in a dose-dependent increase in luciferase activity. This method provides a simple and sensitive cell-based assay for screening of PDE7 selective inhibitors for the treatment of T cell mediated diseases. Renu Malik and Roop Singh Bora contributed equally to this work.  相似文献   

20.
Mammalian sperm motility, capacitation, and the acrosome reaction are regulated by signal transduction systems involving cAMP as a second messenger. Levels of cAMP are controlled by two key enzymes, adenylyl cyclase and phosphodiesterases (PDEs), the latter being involved in cAMP degradation. Calmodulin-dependent PDE (PDE1) and cAMP-specific PDE (PDE4) activities were previously identified in spermatozoa via the use of specific inhibitors. Here we report that human sperm PDEs are associated with the plasma membrane (50%-60%) as well as with the particulate fraction (30%-50%) and have more affinity for cAMP than cGMP. Immunocytochemical data indicated that PDE1A, a variant of PDE1, is localized on the equatorial segment of the sperm head as well as on the mid and principal pieces of the flagellum, and that PDE3A is found on the postacrosomal segment of the sperm head. Immunoblotting confirmed the presence of PDE1A and PDE3A isoforms in spermatozoa. Milrinone, a PDE3 inhibitor, increased intracellular levels of cAMP by about 15% but did not affect sperm functions, possibly because PDE3 represents only a small proportion of the sperm total PDE activity (10% and 25% in Triton X-100 soluble and particulate fractions, respectively). PDE1A activity in whole sperm extract or after partial purification by anion-exchange chromatography was not stimulated by calcium + calmodulin. Results obtained with electrophoresis in native conditions indicated that calmodulin is tightly bound to PDE1A. Incubation with EGTA + EDTA, trifluoperazine, or urea did not dissociate the PDE1A-calmodulin complex. These results suggest that PDE1A is permanently activated in human spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号