首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132T and B. longum JCM1217T) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required.  相似文献   

2.
The coastal ecosystems of California are highly utilized by humans and animals, but the ecology of fecal bacteria at the land–sea interface is not well understood. This study evaluated the distribution of potentially pathogenic bacteria in invertebrates from linked marine, estuarine, and freshwater ecosystems in central California. A variety of filter-feeding clams, mussels, worms, and crab tissues were selectively cultured for Salmonella spp., Campylobacter spp., Escherichia coli-O157, Clostridium perfringens, Plesiomonas shigelloides, and Vibrio spp. A longitudinal study assessed environmental risk factors for detecting these bacterial species in sentinel mussel batches. Putative risk factors included mussel collection near higher risk areas for livestock or human sewage exposure, adjacent human population density, season, recent precipitation, water temperature, water type, bivalve type, and freshwater outflow exposure. Bacteria detected in invertebrates included Salmonella spp., C. perfringens, P. shigelloides, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio alginolyticus. Overall, 80% of mussel batches were culture positive for at least one of the bacterial species, although the pathogens Campylobacter, E. coli-O157, and Salmonella were not detected. Many of the same bacterial species were also cultured from upstream estuarine and riverine invertebrates. Exposure to human sewage sources, recent precipitation, and water temperature were significant risk factors for bacterial detection in sentinel mussel batches. These findings are consistent with the hypothesis that filter-feeding invertebrates along the coast concentrate fecal bacteria flowing from land to sea and show that the relationships between anthropogenic effects on coastal ecosystems and the environmental niches of fecal bacteria are complex and dynamic.  相似文献   

3.
Bacteria isolated from infant feces were immobilized in polysaccharide gel beads (2.5% gellan gum, 0.25% xanthan gum) using a two-phase dispersion process. A 52-day continuous culture was carried out in a single-stage chemostat containing precolonized beads and fed with a medium formulated to approximate the composition of infant chyme. Different dilution rates and pH conditions were tested to simulate the proximal (PCS), transverse (TCS), and distal (DCS) colons. Immobilization preserved all nine bacterial groups tested with survival rates between 3 and 56%. After 1 week fermentation, beads were highly colonized with all populations tested (excepted Staphylococcus spp. present in low numbers), which remained stable throughout the 7.5 weeks of fermentation, with variations below 1 log unit. However, free-cell populations in the circulating liquid medium, produced by immobilized cell growth, cell-release activity from gel beads, and free-cell growth, were altered considerably by culture conditions. Compared to the stabilization period, PCS was characterized by a considerable and rapid increase in Bifidobacterium spp. concentrations (7.4 to 9.6 log CFU/mL), whereas Bifidobacterium spp., Lactobacillus spp., and Clostridium spp. concentrations decreased and Staphylococcus spp. and coliforms increased during TCS and DCS. Under pseudo-steady-state conditions, the community structure developed in the chemostat reflected the relative proportions of viable bacterial numbers and metabolites generally encountered in infant feces. This work showed that a complex microbiota such as infant fecal bacteria can be immobilized and used in a continuous in vitro intestinal fermentation model to reproduce the high bacterial concentration and bacterial diversity of the feces inoculum, at least at the genera level, with a high stability during long-term experiment.  相似文献   

4.
Several microbial populations on plants interact with each other and their host through the actions of secreted metabolites. However, the role of diverse microorganisms and their metabolites on plant health has yet to be fully appreciated. Here, we investigated the population diversity of two dominant epiphytic bacterial genuses in different area and their role in biological control of fire blight disease. To do so, we isolated and calculated population diversity of different Pantoea spp. and Pseudomonas spp. using serial dilution methods. The growth inhibition of Erwinia amylovora in vitro by some of these bacteria indicated the ecological significance of secondary metabolites produced by these bacteria and discuss how they might contribute to biological control of fire blight disease. Although, we did not work on the ability of these bacteria on induction of disease resistance but it could be considered for future, because they represent very different but important types of secondary metabolites. We also described how the weather conditions in different geographical regions can effect on the population of these epiphytic bacterial phenotypes leading to plant health promotion. In conclusion, we demonstrated the role of Pantoea and Pseudomonas population diversity on prevalence of fire blight in different area of north-east of Iran.  相似文献   

5.
Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF) cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid) contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%). We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.  相似文献   

6.
Several dietary ingredients may affect the bacterial community structure and metabolism in the porcine gut and may therefore influence animals'' health and performance. This study investigated the effects of cereal source and calcium-phosphorus (CaP) level in the diet on bacterial microbiota and metabolites, nutrient intake, and gut environment in weaned pigs. Pigs (n = 8/treatment) were fed wheat-barley- or corn-based diets with an adequate or high CaP level for 14 days. Effects on microbiota in the stomach, ileum, and midcolon were assessed using quantitative PCR. Data showed that Enterobacteriaceae, Campylobacter spp., and Helicobacter spp., which all contain highly immune reactive lipopolysaccharide (LPS), were abundant at all gut sites. Diet effects on bacteria and metabolites were moderate and occurred mainly in the upper gut, whereas no effects on bacteria, fermentation products, and LPS could be observed in the colon. Differences in carbohydrate intake with corn versus wheat-barley diets selectively stimulated Bifidobacterium in the stomach and ileum. There was a growth advantage for a few bacterial groups in the stomach and ileum of pigs fed the high versus adequate CaP level (i.e., gastric Enterobacteriaceae and ileal Enterococcus, Bacteroides-Prevotella-Porphyromonas, and Campylobacter). Interestingly, gastrointestinal pH was not affected by dietary CaP level. The present findings demonstrate the stability of the bacterial community and gut environment toward dietary changes even in young pigs. The results on stimulation of gastric and ileal Bifidobacterium by corn diets may be employed in nutritional strategies to support gut health after weaning.  相似文献   

7.
Bacterial disease has caused high mortality of breeding molluscs from 2009 to 2011 in the Changhai area (Dalian, China). Vibrio spp. and Pseudomonas spp. have been detected as major pathogenic agents for aquatic animals in this area. In the present study, four virulence genes including vsm, toxR, aprX and carA were targeted to develop a real-time PCR assay for the quantitative detection of Vibrio splendidus, V. parahaemolyticus, Pseudomonas fluorescens and P. putida, respectively. The sensitivity and specificity of the assays were verified by experimental samples, and the variation tendencies of pathogenic V. splendidus, V. parahaemolyticus, P. fluorescens and P. putida strains from June to September were also detected in mollusc farming waters during 2011–2014. The concentration of V. splendidus increased from June to July, reduced in August, and then increased again in September. The highest count of V. parahaemolyticus appeared in July, and then dramatically decreased from August to September. Conversely, the counts of P. fluorescens and P. putida remained at lower levels from June to August, and then dramatically peaked in September. All four pathogenic bacteria displayed similar fluctuation tendencies of count variation in each year, and their concentrations were found to have a correlation with the average annual temperature. The variation tendency of pathogenic bacteria with temperature suggested that temperature was one of the most important factors to regulate the bacterial growth in a farming area, which could further provide information for the early warning of disease outbreak by using a convenient real-time PCR assay.  相似文献   

8.
Abstract

Our objective was to determine the suppressive abilities of bacterial metabolites derived from Xenorhabdus and Photorhabdus spp. on Glomerella cingulata, Phomopsis sp., Phytophthora cactorum, and Fusicladosporium effusum, which are fungal or oomycete pathogens of pecan, and Monilinia fructicola, a fungal pathogen of peach. In the first set of in vitro assays, when metabolites were compared based on initial bacterial cell count, X. bovienii (SN) metabolites generally exhibited the greatest suppression of phytopathogens and Xenorhabdus sp. (355) the least with Photorhabdus luminescens (Hb) and Xenorhabdus nematophila (All) being intermediate. In a second set of in vitro assays, in which metabolites were compared at 50 mg per ml acetone, P. luminescens (VS) exhibited greater suppression than P. luminescens (Hb), Photorhabdus sp. (MX4), X. bovienii (SN), and Xenorhabdus sp. (3 – 8b). In in vivo tests, 6 or 12% dilutions of X. bovienii (SN) or P. luminescens (Hb) metabolites caused 90 – 100% suppression of P. cactorum lesions on pecan leaves with only slight phytotoxicity. No phytotoxic effects were observed in detached peach leaves at dilutions up to 25%. Metabolite treatments, derived from X. bovienii (SN) and P. luminescens (Hb), were also tested for suppression of F. effusum sporulation in detached pecan shoots. Reductions in sporulation caused by bacterial metabolites were similar to those following treatment with two chemical fungicides, dodine and fenbuconazole; a third chemical triphenyltin hydroxide had no effect. Further research is warranted to determine if fungal or oomycete incited diseases in pecan and peach can be controlled with metabolites of Xenorhabdus spp. and Photorhabdus spp.  相似文献   

9.
Summay Soil samples were taken from 48 fields in the southern part of Thailand in which either bambara groundnut (Vigna subterranea) or groundnut (Arachis hypogeae) had been planted. Bacillus spp. were isolated using soil dilution plates and heat treatment to screen for endospore-producing bacteria. Among 342 Bacillus spp. isolates tested, 168 isolates were not antagonistic to Bradyrhizobium sp. strain NC-92 using dual culture technique. Further testing found 16 isolates of Bacillus spp. had the ability to inhibit mycelial growth of Rhizoctonia solani, a causal agent of leaf blight of bambara groundnut. Among these isolates, Bacillus spp. isolate TRV 9-5-2 had the greatest activity in anti-microbial tests against R. solani. This isolate was later identified as B. firmus. A powder formulation of B. firmus was developed by mixing bacterial endospores, talcum, sodium carboxymethylcellulose (SCMC) and polyvinylpyrolidone (PVP). The formulations contained bacterial levels ranging from 108 to 1010 c.f.u./g and the viability of bacteria in all formulations remained high after 1 year storage at room temperature (26–32 °C). All formulations showed satisfactory effectiveness in vitro in suppressing mycelial growth of R. solani using dual culture technique. The application of formulations as seed treatment showed that these formulations did not cause abnormality of seedling shape and had no effect on the germination of bambara groundnut seeds.  相似文献   

10.
The severe side-effects elicited by conventional antibiotic therapy and the recurrence of Bacterial vaginosis-associated bacteria and bacterial resistance have led to the development of novel alternative therapies, among which genital probiotics are widely used. In this study, we aimed to evaluate the antimicrobial activities of Lactobacillus plantarum Lp62 and its supernatant against Gardnerella vaginalis, using both in vitro and in vivo approaches. In vitro assays were used to evaluate the viability of the strain and the antimicrobial activities of the supernatant in different pH ranges. An in vivo assay was performed on female BALB/c mice, wherein the animals were divided into eight groups: four control groups and four treated groups (for curative and preventive therapies). After infecting and treating the mice, the animals were killed to quantify the bacterial load using qPCR, evaluate leucocyte cellular response, determine vaginal cytokine levels and perform cytokine tissue gene expression. Our analyses revealed significant activity of the strain and its supernatant against G. vaginalis. Preliminary in vitro tests showed that the strain grew with equal efficiency in different pH ranges. Meanwhile, the presence of halo and inhibition of pathogen growth established the significant activity of the supernatant against G. vaginalis. We observed that both micro-organisms are resident bacteria of mouse microbiota and that the lactobacilli population growth was affected by G. vaginalis and vice versa. We also observed that the treated groups, with their low bacterial load, absence of leucocyte recruitment, reduced cytokine levels in the vaginal lavage and normalized cytokine gene expression, successfully controlled the infection.  相似文献   

11.
A feeding study was performed to monitor the effect of chitosan intake on the fecal microbiota of ten healthy human subjects. Diversity of microflora was monitored during 8 weeks including 4 weeks of chitosan supplementations. Using denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons and quantitative PCR method we revealed possible changes originating in the overall bacterial composition and also in the subpopulation of Bifidobacterium group. DGGE profiles displayed high complexity and individuality for each subject. Considerable variations in the composition of band patterns were observed among different persons. A raised level of fecal Bacteroides in response to chitosan intake was found in all samples. Bifidobacterium levels following chitosan intake increased or remain unchanged. Non-significant increase was, surprisingly, found in the numbers of butyrate-producing bacteria.  相似文献   

12.
In vitro cultures of triploid seedless watermelon cv. Arka Manik displayed a decline in shoot and root growth after 4–5 years of active culturing. Visibly clean cultures upon indexing on enriched media showed covert bacteria, and a significant improvement in proliferation and rooting in response to surface sterilization. The bacteria however survived endophytically. Low pH and reduced clarity of agar gelled medium were found to mask the expression of bacteria in the tissue culture medium. Gentamycin, streptomycin or broad-spectrum bactericide cefazolin provided as a 2 ml overlay in the medium in factorial combination at 0 or 50 mg l–1 resulted in selective suppression of some bacteria depending on the treatment and eight bacterial clones comprising of four Gram-positive (Bacillus spp.) and four-Gram negative (3 × Pseudomonas spp. and 1 × Aeromonas sp.) strains were isolated from the cultures. Provision of 50 mg l–1 gentamycin in 2 ml overlay in the multiplication or rooting medium coupled with occasional decontamination of cultures helped in circumventing the decline problem. The plants established in the field after 6 years of active in vitro culturing appeared normal and fertile suggesting the feasibility of keeping cultures for long periods, thus saving time and other resources. Freeing the cultures from covert bacteria was complicated by the presence of different bacterial types and this will be addressed later.  相似文献   

13.
Aims: Kava beverages are highly perishable even under refrigerated conditions. This study aimed to investigate the bacterial community dynamics in kava beverages during refrigeration. Methods and Results: Four freshly made kava beverages were obtained from kava bars and stored at 4°C. On days 0, 3 and 6, the aerobic plate count (APC), lactic acid bacteria (LAB) count and yeast and mould count (YMC) of the samples were determined. Meanwhile, bacterial DNA was extracted from each sample and subjected to the polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE). Moreover, species‐specific PCR assays were employed to identify predominant Pseudomonas spp. involved in kava spoilage. Over the storage period, the APC, LAB count and YMC of the four kava beverages all increased, whereas their pH values decreased. The DGGE profile revealed diverse bacterial populations in the samples. LAB, such as Weissella soli, Lactobacillus spp. and Lactococcus lactis, were found in the kava beverages. Species‐specific PCR assays detected Pseudomonas putida and Pseudomonas fluorescens in the samples; Ps. fluorescens became dominant during refrigeration. Conclusions: LAB and Pseudomonas may play a significant role in the spoilage of kava beverages. Significance and Impact of the Study: This study provides important information that may be used to extend the shelf life of kava beverages.  相似文献   

14.
Fusarium verticillioides is the most important seed transmitted pathogen that infects maize. It produces fumonisins, toxins that have potential toxicity for humans and animals. Control of F. verticillioides colonisation and systemic contamination of maize has become a priority area in food safety research. The aims of this research were (1) to characterise the maize endorhizosphere and rhizoplane inhabitant bacteria and Fusarium spp., (2) to select bacterial strains with impact on F. verticillioides growth and fumonisin B1 production in vitro, (3) to examine the effects of bacterial inoculum levels on F. verticillioides root colonisation under greenhouse conditions. Arthrobacter spp. and Azotobacter spp. were the predominant genera isolated from maize endorhizosphere and rhizoplane at the first sampling period, whilst F. verticillioides strains showed the greatest counts at the same isolation period. All F. verticillioides strains were able to produce fumonisin B1 in maize cultures. Arthrobacter globiformis RC5 and Azotobacter armeniacus RC2, used alone or in a mix, demonstrated important effects on F. verticillioides growth and fumonisin B1 suppression in vitro. Only Azotobacter armeniacus RC2 significantly reduced the F. verticillioides root colonisation at 106 and 107 CFU g–1 levels under greenhouse conditions.  相似文献   

15.
A variety of lactic acid bacteria were screened for their ability to produce folate intracellularly and/or extracellularly. Lactococcus lactis, Streptococcus thermophilus, and Leuconostoc spp. all produced folate, while most Lactobacillus spp., with the exception of Lactobacillus plantarum, were not able to produce folate. Folate production was further investigated in L. lactis as a model organism for metabolic engineering and in S. thermophilus for direct translation to (dairy) applications. For both these two lactic acid bacteria, an inverse relationship was observed between growth rate and folate production. When cultures were grown at inhibitory concentrations of antibiotics or salt or when the bacteria were subjected to low growth rates in chemostat cultures, folate levels in the cultures were increased relative to cell mass and (lactic) acid production. S. thermophilus excreted more folate than L. lactis, presumably as a result of differences in the number of glutamyl residues of the folate produced. In S. thermophilus 5,10-methenyl and 5-formyl tetrahydrofolate were detected as the major folate derivatives, both containing three glutamyl residues, while in L. lactis 5,10-methenyl and 10-formyl tetrahydrofolate were found, both with either four, five, or six glutamyl residues. Excretion of folate was stimulated at lower pH in S. thermophilus, but pH had no effect on folate excretion by L. lactis. Finally, several environmental parameters that influence folate production in these lactic acid bacteria were observed; high external pH increased folate production and the addition of p-aminobenzoic acid stimulated folate production, while high tyrosine concentrations led to decreased folate biosynthesis.  相似文献   

16.
There is a growing demand for silver-based biocides, including both ionic silver forms and metallic nanosilver. The use of metallic nanosilver, typically chemically produced, faces challenges including particle agglomeration, high costs, and upscaling difficulties . Additionally, there exists a need for the development of a more eco-friendly production of nanosilver. In this study, Gram-positive and Gram-negative bacteria were utilized in the non-enzymatic production of silver nanoparticles via the interaction of silver ions and organic compounds present on the bacterial cell. Only lactic acid bacteria, Lactobacillus spp., Pediococcus pentosaceus, Enterococcus faecium, and Lactococcus garvieae, were able to reduce silver. The nanoparticles of the five best producing Lactobacillus spp. were examined more into detail with transmission electron microscopy. Particle localization inside the cell, the mean particle size, and size distribution were species dependent, with Lactobacillus fermentum having the smallest mean particle size of 11.2 nm, the most narrow size distribution, and most nanoparticles associated with the outside of the cells. Furthermore, influence of pH on the reduction process was investigated. With increasing pH, silver recovery increased as well as the reduction rate as indicated by UV–VIS analyses. This study demonstrated that Lactobacillus spp. can be used for a rapid and efficient production of silver nanoparticles.  相似文献   

17.
Recently, a “human gut microbial gene catalogue,” which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the “human gut microbial gene catalogue” were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.  相似文献   

18.
In laboratory experiments, the bacterial flora of the zooplanktonmicrobial environments seawater, fecal pellets and associatedwith the external and internal surfaces of the copepod Acartiatonsa(Dana) were examined. The bacteria associated with fecal pelletswere dominated by Bacillus spp., Cytophaga/Flavobacterium spp.,Vibrio spp. and Pseudomonas spp. The same genera were foundin the seawater (0.22 7mu;m filtered) in which the pellets wereincubated. The bacteria showed a characteristic growth succession,and the abundance increased several orders of magnitude in theseawater during incubation of the pellets, indicating growthand proliferation based on the disintegrating/degrading fecalpellets. A carbon budget calculation revealed that organic matterfrom degrading fecal pellets could cover the carbon demand forthe growing bacterioplankton. The composition of the bacterialcommunity in the seawater and the fecal pellets also indicateda colonization of the pellets from bacterioplankton. The compositionof the bacteria associated with the copepods showed that bacterialgenera characterized as surface associated were preferentiallyassociated with fecal pellets, animal surfaces and intestines.This suggests a specific intestinal flora in the cultivatedcopepods composed of 103 culturable bacteria per intestine (colony-formingunits, c.f.u.) or 105 bacteria per intestine (acridine orangedirect counts, AODC), possibly colonizing the intestine passivelyduring filtration of algae. The activity of the bacterial communitieswas examined by the numencal ratio c.f.u.:AODC, where 1–19%of the bacteria were found active, with no significant differencebetween microbial environments.  相似文献   

19.
Cerumen, also known as ear wax, is a yellowish waxy substance secreted from specialized glands in the ear canal of mammals. Human cerumen is rich in protein (mainly keratin), lipids (long-chain fatty acids), alcohols, squalene, and cholesterol. To-date the role of cerumen is not totally clear but it is believed to have antimicrobial properties. Here we describe the isolation of multiple bacterial species from human cerumen (among them many Staphylococcus spp. and, interestingly, multiple Bacillus spp.) showing that many of these bacteria harbor biochemical traits enabling them to utilize different cerumen components for their growth. We also suggest the existence of microbial consortia.  相似文献   

20.
Culturable leaf-associated bacteria inhabiting a plant have been considered as promising biological control agent (BCA) candidates because they can survive on the plant. We investigated the relationship between bacterial groups of culturable leaf-associated bacteria on greenhouse- and field-grown tomato leaves and their antifungal activities against tomato diseases in vitro and in vivo. In addition, the isolated bacteria were analyzed for N-acyl-homoserine lactone (AHL) and indole-3-acetic acid (IAA) production, which have been reported to associate with bacterial colonization, and resistance to a tomato alkaloid (α-tomatine). Leaf washings and subsequent leaf macerates were used to estimate the population size of epiphytic and more internal bacteria. Bacterial population sizes on leaves at the same position increased as the leaves aged under both greenhouse and field conditions. Field-grown tomatoes had significantly larger population sizes than greenhouse-grown tomatoes. Analysis of 16S rRNA gene (rDNA) sequencing using 887 culturable leaf-associated bacteria revealed a predominance of the Bacillus and Pseudomonas culturable leaf-associated bacterial groups on greenhouse- and field-grown tomatoes, respectively. Curtobacterium and Sphingomonas were frequently recovered from both locations. From the 2138 bacterial strains tested, we selected several strains having in vitro antifungal activity against three fungal pathogens of tomato: Botrytis cinerea, Fulvia fulva, and Alternaria solani. Among bacterial strains with strong in vitro antifungal activities, Bacillus and Pantoea tended to show strong antifungal activities, whereas Curtobacterium and Sphingomonas were not effective. The results indicated the differences in antifungal activity among predominant bacterial groups. Analysis of α-tomatine resistance revealed that most bacterial strains in the dominant groups exhibited moderate or high resistance to α-tomatine in growth medium. Furthermore, some Sphingomonas and Pantoea strains showed AHL and IAA production activities. Strain 125NP12 (Pantoea ananatis) showed particular α-tomatine resistance, and AHL and IAA production had the highest protective value (91.7) against gray mold. Thus, the differences of these physiological properties among dominant bacteria may be associated with the disease suppression ability of BCAs on tomato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号