首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between membrane lipid composition and membrane lipid phase transitions was investigated in Yersinia enterocolitica cells grown at 5, 22 and 37°C. The total phospholipid concentrations were 9.4, 7.3 and 6.3% of the cell dry weight for cells grown at 5, 22 and 37°C, respectively. The relative concentrations of the three major phospholipids, phosphatidylethanolamine (73–76%), phosphatidylglycerol (9–11%) and cardiolipin (11–13%) were essentially the same at all three growth temperatures. The ratios of unsaturated to saturated fatty acids were 2.2, 1.1 and 0.4 for cells grown at 5, 22 and 37°C, respectively. This change in the fatty acid composition in response to temperature changes is similar to the patterns reported for other organisms. Reversible thermotropic phase transitions were detected by calorimetric analysis in both pure lipid preparations and membrane preparations. The mid-points of the thermotropic phase transitions were at ?13, ?9 and 1°C for membranes from cells grown at 5, 22 and 37°C, respectively. The phase transitions of the membranes from cells grown at the three different temperatures occurred below the lowest growth temperature (5°C). The alternations in the fatty acid composition in Y. enterocolitica did not, therefore, appear to be required to adjust membrane fluidity but might rather be required for some other membrane function.  相似文献   

2.
Isolated membrane fragments from Anacystis nidulans grown at 39 °C undergo visible spectral changes on chilling, suggesting a carotenoid component is altered. No such changes are seen when cells are grown at 25 °C. The magnitude of the decreased absorbance is a function of the chilling temperature and the media in which membrane fragments are suspended. The spectral decrease following chilling develops relatively slowly and is a function of the cooling rate and final temperature. The absorbance change is reversed if the fragments are heated to near 50 °C subsequent to chilling. Liposomes prepared from a total lipid extract of Anacystis undergo a spectral change on chilling which closely resembles that occurring in whole cells or isolated membrane fragments. Liposomes prepared from an extract of cells grown at 25 °C show only about 30% as great a spectral change as those from cells grown at 39 °C. The spectral bleaching is freely reversible when the liposomes are reheated, but shows a pronounced hysteresis. It is suggested that specific phase changes occur in Anacystis membranes and artificial liposomes on cooling which alter the environment of carotenoid. These changes may relate to previous observations that cells grown at 39 °C cannot survive a cold shock while those grown at 25 °C do.  相似文献   

3.
G.J. Morris 《Cryobiology》1975,12(3):192-201
Haemolysis by thermal shock was unaffected by altering the solute cation but was dependent on solute anions. This suggests that cellular shrinkage is not the critical factor for the induction of thermal shock. Both glycerol and DMSO reduce thermal shock damage in hypertonic sodium chloride. The effect of time of exposure to hypertonic solutions observed at 37 °C was not affected by the metabolic inhibitors ouabain, flouride and PCMBS. The only additive to have any significant effect was phloretin.No evidence was obtained for the loss of membrane lipids or proteins from intact erythrocytes. Under each of the hypertonic conditions studied there appeared to be a correlation between the loss of membrane lipid and cellular lysis at constant temperature before cooling. There does not appear to be any correlation between the ratio of phospholipid to cholesterol in the hypertonic solution (a possible function of the membrane phospholipid:cholesterol ratio) and lysis upon a subsequent reduction in temperature.The protective effect of egg lecithin against thermal-shock damage in hypertonic solutions was confirmed; phosphatidyl serine was also found to be effective in reducing thermal shock. Phosphatidyl choline, phosphatidyl ethanolamine and sphingomyelin had no effect.  相似文献   

4.
Based on the observation that shocks provoked by heat or amphiphilic compounds present some similarities, this work aims at studying whether cells grown on oleate (amphiphilic pre-stress) acquire a tolerance to heat shock. In rich media, changing glucose for oleate significantly enhanced the cell resistance to the shock, however, cells grown on a minimal oleate medium lost their ability to grow on agar with the same kinetic than glucose-grown cells (more than 7-log decrease in 18 min compared with 3-log for oleate-grown cells). Despite this difference in kinetics, the sequence of events was similar for oleate-grown cells maintained at 50°C with a (1) loss of ability to form colonies at 27°C, (2) loss of membrane integrity and (3) lysis (observed only for some minimal-oleate-grown cells). Glucose-grown cells underwent different changes. Their membranes, which were less fluid, lost their integrity as well and cells were rapidly inactivated. But, surprisingly, their nuclear DNA was not stained by propidium iodide and other cationic fluorescent DNA-specific probes but became stainable by hydrophobic ones. Moreover, they underwent a dramatic increase in membrane viscosity. The evolution of lipid bodies during the heat shock depended also on the growth medium. In glucose-grown cells, they seemed to coalesce with the nuclear membrane whereas for oleate-grown cells, they coalesced together forming big droplets which could be released in the medium. In some rare cases of oleate-grown cells, lipid bodies were fragmented and occupied all the cell volume. These results show that heat triggers programmed cell death with uncommon hallmarks for glucose-grown cells and necrosis for methyl-oleate-grown cells.  相似文献   

5.
Myristic acid specifically deuterated at several positions along the acyl chain was biosynthetically incorporated into the membrane lipids of Acholeplasma laidlawii B to the level of ?90%. 2H-NMR was used to study the molecular order and lipid phase composition of the membranes as a function of temperature. Isolated membranes and intact cells give rise to similar 2H spectra. Below 25°C the spectra exhibit a broad gel phase component which at 0°C reaches the rigid limit value expected for an immobilized methylene group. Spectral moments were used to determine the relative amounts of gel and liquid crystalline phase lipids throughout the gel-liquid crystal phase transition. The results indicate that at the growth temperature (37 or 30°C) the A. laidlawii B membrane lipids are ~85–90% in the gel state, and that protein has little effect on lipid order of the liquid crystalline lipid, but leads to an increase in the linewidth by approx. 20%.  相似文献   

6.
Permease studies are generally carried out by incubating cells in growth medium with labeled substrate, collecting the cells on microporous membrane filters, and washing them free from extracellular radioactivity with ice-cold medium. Studies of thiomethylgalactoside, valine, and galactose accumulation indicate that in several strains of Escherichia coli the bacterial membrane is exquisitely sensitive to isosmotic cold shock. Substrate pools formed at 25 C may suffer almost total loss if the cells are rapidly chilled to approximately 0 C during sampling. In glycerol-grown cells, this rapid efflux of substrate is prevented or minimized if the cells are subjected at the moment of cold shock to a simultaneous hyperosmotic transition. Because of this protective effect, the apparent size of a permease accumulated substrate pool is extremely sensitive to the osmotic composition of the incubation medium and may appear to be increased as much as 10-fold when the osmolarity is reduced from approximately 0.3 to 0.1 osmolar. These differences vanish when sampling and washing are carried out with medium at room temperature. It is suggested that isosmotic cold shock causes crystallization of the liquid-like lipids within the membrane. The hydrophilic channels created in this process would facilitate the rapid efflux of permease accumulated substrates. The imposition of a simultaneous hyperosmotic transition by dehydrating the cell periphery would cause increased lipid interaction, thus preserving the integrity of the cells membrane.  相似文献   

7.
Abstract Rapid cold hardening is a naturally occurring phenomenon in insects that is thought to be responsible for increased cold tolerance during diurnal variations in temperature. The underlying physiological mechanisms are still not fully resolved but, in Drosophila melanogaster (Meigen 1830), rapid cold hardening is accompanied by specific changes in the membrane lipid composition. To further understand the link between rapid cold hardening and adjustments in the membrane lipid composition, the present study investigates how different rates of cooling affect thermotolerance and the composition of phospholipid fatty acids. Female Drosophila are cooled gradually from 25 to 0 °C at 0.01, 0.05, 0.1 or 0.5 °C min?1, respectively, and, subsequently, phospholipid fatty acid composition and survival after a 1‐h cold shock at ?5 °C is measured. The rapid cold hardening treatments all influence cold tolerance differently so that short and intermediate rapid cold hardening treatments (0.05, 0.1 or 0.5 °C min?1 cooling rates) increase cold shock survival, whereas the slow cooling treatment (0.01 °C min?1) decreases survival relative to an untreated control. The intermediate rapid cold hardening treatments (0.05 or 0.1 °C min?1) induce a similar type of response characterized by an increase in the molar percentage of linoleic acid, 18:2(n‐6), at the expense of 16:0 and 18:1(n‐9), which leads to an increase in the degree of unsaturation. The slowest cooling treatment (0.01 °C min?1) results in a large increase in cis‐16:1(n‐7) and significant reductions in the saturated phospholipid fatty acids 16:0, 18:0 and the unsaturated 16:1(n‐9) and 18:2(n‐6) fatty acids. These changes cause a slight decrease in the average length of the phospholipid fatty acids and an increase in the overall ratio of unsaturated vs. saturated fatty acids. These findings demonstrate that the rate of cooling is important for both the reorganization of membrane lipids, and for the degree of acquired cold tolerance during rapid cold hardening, and they suggest an important role for rapid cold hardening during diurnal rather than seasonal temperature changes.  相似文献   

8.
Summary Sf21 and Sf9 cell lines established from the lepidoptera Spodoptera frugiperda do not display major induction of heat shock proteins when exposed to a temperature of 37°C. After some months of adaptation at 37°C we obtained two new cell lines, Sf21-HT and SF9-HT, which have now been established for several years in our laboratory. The Sf9-HT line displays a slightly shorter doubling time at 37°C than the wild type at 28°C, but cell lethality gives rise to an earlier growth arrest. The composition of total lipid extract from heat-adapted cells reveals a higher sphingomyelin to phosphatidylcholine ratio and a higher percentage of saturated fatty acids, which are expected for the lower membrane fluidity, required for thermotolerance. The cell volume of Sf9-HT is doubled, and by flow cytometry we showed that the DNA content is twice that in the parental cell line. Karyotypic examination of metaphasic cells achieved under epifluorescence microscopy revealed a doubled chromosome number in Sf9-HT.  相似文献   

9.
Purified cytoplasmic and outer membranes isolated from cells of wild type Escherichia coli grown at 12, 20, 37 and 43°C were labelled with the fatty acid spin probe 5-doxyl stearate. Electron spin resonance spectroscopy revealed broad thermotropic phase changes. The inherent viscosity of both membranes was found to increase as a function of elevated growth temperature. The lipid order to disorder transition in the outer membrane but not the cytoplasmic membrane was dramatically affected by the temperature of growth. As a result, the cytoplasmic membrane presumably existed in a gel + liquid crystalline state during cellular growth at 12 and 20°C, but in a liquid crystalline state when cells were grown at 37 and 43°C. In contrast, the outer membrane apparently existed in a gel + liquid crystalline state at all incubation temperatures. Data presented here indicate that the temperature range over which the cell can maintain the outer membrane phospholipids in a mixed (presumedly gel + liquid crystalline) state correlates with the temperature range over which growth occurs.  相似文献   

10.
The rapid cold-hardening (RCH) response increases the cold tolerance of insects by protecting against non-freezing, cold-shock injury. Apoptosis, or programmed cell death, plays important roles in development and the elimination of sub-lethally damaged cells. Our objectives were to determine whether apoptosis plays a role in cold-shock injury and, if so, whether the RCH response protects against cold-induced apoptosis in Drosophila melanogaster. The present study confirmed that RCH increased the cold tolerance of the adults at the organismal level. No flies in the cold-shocked group survived direct exposure to ‒7°C for 2 h, whereas significantly more flies in the RCH group survived exposure to ‒7°C for 2 h after a 2-h exposure to 5°C. We used a TUNEL assay to detect and quantify apoptotic cell death in five groups of flies including control, cold-shocked, RCH, heat-shocked (37.5°C, 30 min), and frozen (‒20°C, 24 h) and found that apoptosis was induced by cold shock, heat shock, and freezing. The RCH treatment significantly improved cell viability by 38% compared to the cold-shocked group. Cold shock-induced DNA fragmentation shown by electrophoresis provided further evidence for apoptosis. SDS-PAGE analysis revealed an RCH-specific protein band with molecular mass of ∼150 kDa. Western-blotting revealed three proteins that play key roles in the apoptotic pathway: caspase-9-like (apoptotic initiator), caspase-3-like (apoptotic executioner) and Bcl-2 (anti-apoptotic protein). Consequently, the results of this study support the hypothesis that the RCH response protects against cold-shock-induced apoptosis.  相似文献   

11.
In both the growth plate and in marrow stromal cell cultures cell-mediated mineralization is preceded by characteristics of anaerobic and low efficiency energy metabolism. Reagents that increase mineralization like malonate and dexamethasone (DEX) also increase the mitochondrial membrane potential (MtMP) especially 1 week after DEX stimulation. Contrarily, levamisole, which decreases mineralization, also decreases MtMP. Modulation of MtMP and energy metabolism could be linked to regulation of mineralization by the uncoupling of oxidative phosphorylation. This uncoupling should be associated with thermogenesis in cells that induce mineralization. We examined whether cold temperature affects mineralization, and whether cellular thermogenesis takes place at cold temperature in parallel to changes in MtMP. Osteoprogenitor cells (OPC) induced, in DEX stimulated rat marrow stroma, higher mineralization at 33°C than at 37°C. Increased mineralization by cold temperature required long incubation since incubation in the cold during short intervals, 3–4 days, did not increase mineralization relative to (37°C) controls. Marrow stromal cells in the presence of valinomycin responded to incubation at 33°C by retaining all the vital dye after 4 h, unlike the cells at 37°C; however, after 24 h the level of dye retention at 33°C was the same as at 37°C. The delayed response of the temperature-dependent (> 37°C) K+ ionophor to incubation in the cold indicated that certain cells may respond to low temperature by local intracellular heating, and by heat conduction to the plasma membrane. DEX-stimulated stromal cells, unlike unstimulated cells, showed increased mitochondrial rhodamine 123 retention in the presence of valinomycin after 24 h in the cold, which corresponds to day 4 of OPC induction. This is consistent with the concept that valinomycin-induced cell damage is mediated by (cold-induced) local heating. The mechanism of this cell damage should selectively prefer non-thermogenic (rhodamine retaining) over thermogenic (rhodamine leaking) cells such as OPC. At cold temperature DEX-stimulated stromal cells showed the best anti-OPC selection under exposure to valinomycine between days 3–7, concurrent with the period of rhodamine leakage from the mitochondria. These results indicate that thermogenesis is enhanced during the period of low MtMP in mineralizing cells, and prolonged exposure to cold increases mineralization also due to induction of subtle thermogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The archaea are distinguished by their unique isoprenoid ether lipids, which typically consist of the sn-2,3-diphytanylglycerol diether or sn-2,3-dibiphytanyldiglycerol tetraether core modified with a variety of polar headgroups. However, many hyperthermophilic archaea also synthesize tetraether lipids with up to four pentacyclic rings per 40-carbon chain, presumably to improve membrane thermal stability at temperatures up to∼110 °C. This study aimed to correlate the ratio of tetraether to diether core lipid, as well as the presence of pentacyclic groups in tetraether lipids, with growth temperature for the hyperthermophilic archaeon, Archaeoglobus fulgidus. Analysis of the membrane core lipids of A. fulgidus using APCI–MS analysis revealed that the tetraether-to-diether lipid ratio increases from 0.3 ± 0.1 for cultures grown at 70°C to 0.9 ± 0.1 for cultures grown at 89°C. Thin-layer chromatography (TLC) followed by APCI–MS analysis provided evidence for no more than one pentacycle in the hydrocarbon chains of tetraether lipid from cultures grown at 70°C and up to 2 pentacycles in the tetraether lipid from cultures grown at higher temperatures. Analysis of the polar lipid extract using TLC and negative-ion ESI–MS suggested the presence of diether and tetraether phospholipids with inositol, glycosyl, and ethanolamine headgroup chemistry.  相似文献   

13.
Streptococcus thermophilus is widely used in food fermentations; it commonly suffers diverse stress challenges during manufacturing. This study investigated the cold shock response of S. thermophilus when the cell culture temperature shifted from 42°C to 15°C or 20°C. The growth of cells was affected more drastically after cold shock at 15°C than at 20°C. The generation time was increased by a factor of 19 when the temperature was lowered from 42° to 20°C, and by a factor of 72 after a cold shock at 15°C. The two-dimensional electrophoretic protein patterns of S. thermophilus under cold shock conditions were compared with the reference protein pattern when cells were grown at optimal temperature. Two proteins of 21.5 and 7.5 kDa synthesized in response to cold shock were characterized. N-terminal sequencing and sequence homology searches have shown that the 7.5-kDa protein belonged to the family of the major cold shock proteins, while no homology was found for the new cold shock protein of 21.5 kDa. Received: 4 June 1999 / Accepted: 6 July 1999  相似文献   

14.
The lipid phase transition of Escherichia coli was studied by high sensitivity differential scanning calorimetry. A temperature sensitive unsaturated fatty acid auxotroph was used to obtain lipids with subnormal unsaturated fatty acid contents. From these studies it was concluded that E. coli can grow normally with as much as 20% of its membrane lipids in the ordered state but that if more than 55% of the lipids are ordered, growth ceases. Studies with wild-type cells show that the phase transition ends more than 10°C below the growth temperature when the growth temperature when the growth temperature is either 25°C or 37°C.  相似文献   

15.
The transfer of elaidate-enriched Acholeplasma laidlawii cells in culture from 37°C to 4°C virtually arrested exogenous cholesterol incorporation into the cell membrane. Cholesterol uptake continued, though at a slower rate, in oleate-enriched A. laidlawii cells undergoing similar temperature shift-down. It is concluded that the incorporation of exogenous cholesterol into the cell membrane of living mycoplasmas is rapid when the membrane lipid bilayer is in the liquid-crystalline state and very slow when the lipid bilayer is in the gel state.  相似文献   

16.
The content of lysophosphatidylethanolamine (LPE) in Y. pseudotuberculosis cells was found to increase during their growth at 8 °C under stationary conditions (without stirring the medium) and at 37°C when the medium contained glucose. The maximum level of LPE (up to 45% of the total phospholipids) was observed in cells grown at 8°C under stationary conditions. Such cells showed decreas growth rate, a reduced yield of biomass, an altered cell morphology, and an increased cell area. The cells contained unsaturated fatty acids, phosphatidylethanolamine (PE), and total phospholipids in small amounts, whereas neutral lipids and diphosphatidylglycerol were abundant. In addition, the cells contained an amount of methylated PE and phospholipids of unknown structure. Irrespective of whether the temperature for growth was low or high, the LPE-rich cells showed a high value (32–36°C) of the maximum temperature of thermal transition of lipids (T max). This finding is indicative of a densification of the membrane lipid matrix of the LPE-rich cells. The suggestion is made that LPE is accumulated in bacterial cells in response to stress caused by oxygen deficiency and pH decrease in the course of glucose fermentatin. The possible relationship between LPE accumulation and the virulence of Y. pseudotuberculosis cells grown at low temperatures is discussed.  相似文献   

17.
Summary When L-929 mouse fibroblasts grown in Eagle’s medium (MEM) supplemented with 10% fetal bovine serum (FBS) were stored in a monodisperse suspension at 4° C, the viability decreased rapidly from the beginning of storage. The viability in this study was determined by counting electronically the number of cells with the capacity to attach to glass substrate and with the membrane boundary resistant to a proteolytic digestion. When, however, the dissociated cells were preincubated briefly at 37° C, and subsequently stored at 4° C as they were attaching on a glass substrate, the rapid loss of viability could be reduced effectively. A biphasic survival profile consisting of an initial phase of slowly decreasing viability and the subsequent phase of rapidly decreasing viability were then observed. The rapid viability loss occurred not only when the cell suspension was prepared by mechanical dislodging but also after trypsinization or dispase treatment. Such viability loss was also observed when the dissociated cells were not stored at 4° C directly but preincubated in a monodisperse suspension at 37° C in a siliconized plate and then stored at 4° C. The above results show that the rapid loss of viability is associated closely with the fact that the cells were not attached to the substrate but in suspension. This work was supported in part by grants-in-aids from the Institute of Physical and Chemical Research and from the Mitsubishi Foundation.  相似文献   

18.
Mitochondrial, microsomal and pellicular membranes were isolated from Tetrahymena cells grown at 39°C or 15°C, and phospholipids, in turn, were separated from total lipids extracted from these membranes. The effect of growth temperature on their solid-to-fluid phase transition temperature was examined by wide-angle X-ray diffraction. The transition temperatures of phospholipids from mitochondria, microsomes and pellicles were 21, 19 and 26°C for cells grown at 39°C and ?8, ?3 and 6°C for cells grown at 15°C, respectively. All phospholipids were found in a completely fluid state at these growth temperatures. From a comparison between the phospholipids and total lipids from pellicles of cells grown at 39°C, a triterpenoid alcohol, tetrahymanol, caused the transition temperature to increase. The alignment of tetrahymanol in membranes was examined with pellicle's total lipid oriented in a sample holder.  相似文献   

19.
The thermotropic behaviour of fatty acid-homogeneous membranes of Acholeplasma laidlawii B was investigated by Fourier transform infrared spectroscopy. The organism was grown at 37°C in the presence of avidin, an inhibitor of fatty acid synthesis, in a medium supplemented with pentadecanoic acid-d29; the enrichment of the membranes with this fatty acid was 95%. The temperature-dependent phase behaviour of the membranes was studied via the C–D stretching vibrational modes of the membrane lipids and was compared with that of the lipid extract. The high level of fatty acid homogeneity results in a sharp (for natural membranes) gel to liquid crystalline phase transition. The transition, in both the membranes and extracted lipids, is centered at about 6°C above the growth temperature. During the transition two principal liquid states are evident, one being more conformationally ordered than the other. The effect of proteins on the principal lipid phase transition is minimal. However, in the intact membranes there is evident a weaker, lower temperature transition, which is not evident in the extracted lipids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号