首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In reverse genetics, RNA interference (RNAi) which is substitutable for gene-disruption, is an outstanding method for knockdown of a gene's function. In Caenorhabditis elegans, feeding RNAi is most convenient, but this RNAi is not suitable for knockdown of multiple genes. Hence, we attempted to establish an efficient method of feeding RNAi for multiple knockdown. We produced bacteria yielding three distinct double-stranded RNAs bound to one another, and fed those bacteria to C. elegans. Quantitative RT-PCR and observation of phenotypes indicated that our method is much more efficient than the traditional one. Our method is useful for investigating genes' functions in C. elegans.  相似文献   

2.
Phenotypic analysis of defects caused by RNA mediated interference (RNAi) in Caenorhabditis elegans has proven to be a powerful tool for determining gene function. In this study we investigated the effectiveness of RNAi in four non-model grassland soil nematodes, Oscheius sp FVV-2., Rhabditis sp, Mesorhabditis sp., and Acrobeloides sp. In contrast to reference experiments performed using C. elegans and Caenorhabditis briggsae, feeding bacteria expressing dsRNA and injecting dsRNA into the gonad did not produce the expected RNAi knockdown phenotypes in any of the grassland nematodes. Quantitative reverse-transcribed PCR (qRT-PCR) assays did not detect a statistically significant reduction in the mRNA levels of endogenous genes targeted by RNAi in Oscheius sp., and Mesorhabditis sp. From these studies we conclude that due to low effectiveness and inconsistent reproducibility, RNAi knockdown phenotypes in non-Caenorhabditis nematodes should be interpreted cautiously.  相似文献   

3.
Double-strand RNA-mediated interference (RNAi) is an effective strategy to knock down target gene expression1-3. It has been applied to many model systems including plants, invertebrates and vertebrates. There are various methods to achieve RNAi in vivo4,5. For example, the target gene may be transformed into an RNAi vector, and then either permanently or transiently transformed into cell lines or primary cells to achieve gene knockdown effects; alternatively synthesized double-strand oligonucleotides from specific target genes (RNAi oligos) may be transiently transformed into cell lines or primary cells to silence target genes; or synthesized double-strand RNA molecules may be microinjected into an organism. Since the nematode C. elegans uses bacteria as a food source, feeding the animals with bacteria expressing double-strand RNA against target genes provides a viable strategy6. Here we present an RNAi feeding method to score body size phenotype. Body size in C. elegans is regulated primarily by the TGF- β - like ligand DBL-1, so this assay is appropriate for identification of TGF-β signaling components7. We used different strains including two RNAi hypersensitive strains to repeat the RNAi feeding experiments. Our results showed that rrf-3 strain gave us the best expected RNAi phenotype. The method is easy to perform, reproducible, and easily quantified. Furthermore, our protocol minimizes the use of specialized equipment, so it is suitable for smaller laboratories or those at predominantly undergraduate institutions.  相似文献   

4.
RNA interference (RNAi) is one of the most important technologies currently available for the analysis of gene function. However, despite the development of various methods, it is still difficult to construct RNAi vectors for plants with the appropriate inverted repeat fragments to produce double-stranded RNA for knockdown experiments. To solve this problem we have developed an easy and simple method to make RNAi constructs using two long oligonucleotides consisting of partially complementary sequences without the need for PCR amplification and multiple cloning steps. CHS RNAi plants generated using this method showed yellow seed color and a decrease in antocyanin content—phenotypes typically observed in CHS loss-of-function mutants. Moreover, we demonstrated specific knockdown of both the PHYA and PHYB genes using a tandem RNAi construct. This method thus represents a powerful tool for gene knockdown in plants.  相似文献   

5.
Genome-wide RNAi screening in Caenorhabditis elegans   总被引:1,自引:0,他引:1  
In Caenorhabditis elegans, introduction of double-stranded RNA (dsRNA) results in the specific inactivation of an endogenous gene with corresponding sequence; this technique is known as RNA interference (RNAi). It has previously been shown that RNAi can be performed by direct microinjection of dsRNA into adult hermaphrodite worms, by soaking worms in a solution of dsRNA, or by feeding worms Escherichia coli expressing target-gene dsRNA. We have developed a simple optimized protocol exploiting this third mode of dsRNA introduction, RNAi by feeding, which allows rapid and effective analysis of gene function in C. elegans. Furthermore, we have constructed a library of bacterial strains corresponding to roughly 86% of the estimated 19,000 predicted genes in C. elegans, and we have used it to perform genome-wide analyses of gene function. This library is publicly available, reusable resource allowing for rapid large-scale RNAi experiments. We have used this library to perform genome-wide analyses of gene function in C. elegans. Here, we describe the protocols used for bacterial library construction and for high-throughput screening in C. elegans using RNAi by feeding.  相似文献   

6.
RNAi is an evolutionarily conserved gene-silencing phenomenon that can be triggered by exogenous delivery of double stranded RNA to organisms. In Caenorhabditis elegans, the response to dsRNA is remarkably robust, and systemic RNAi responses are often observed. We have taken a genetic approach using this organism to better understand the mechanisms that facilitate RNAi. By analyzing strains of RNAi-defective mutants, we have uncovered an unexpected role for ABC transporters in RNAi and related silencing mechanisms. Ten of the sixty ABC transporter genes encoded in the C. elegans genome are required for robust RNAi. We will present data that highlights common features of these genes relative to their roles in RNAi, including genetic interactions with other components of the RNAi machinery. We will also describe unique roles for some transporter genes in endogenous RNAi-related processes.  相似文献   

7.
Multiple gene activities control complex biological processes such as cell fate specification during development and cellular reprogramming. Investigating the manifold gene functions in biological systems requires also simultaneous depletion of two or more gene activities. RNA interference-mediated knockdown (RNAi) is commonly used in Caenorhabditis elegans to assess essential genes, which otherwise lead to lethality or developmental arrest upon full knockout. RNAi application is straightforward by feeding worms with RNAi plasmid-containing bacteria. However, the general approach of mixing bacterial RNAi clones to deplete two genes simultaneously often yields poor results. To address this issue, we developed a bacterial conjugation-mediated double RNAi technique ‘CONJUDOR’. It allows combining RNAi bacteria for robust double RNAi with high-throughput. To demonstrate the power of CONJUDOR for large scale double RNAi screens we conjugated RNAi against the histone chaperone gene lin-53 with more than 700 other chromatin factor genes. Thereby, we identified the Set1/MLL methyltransferase complex member RBBP-5 as a novel germ cell reprogramming barrier. Our findings demonstrate that CONJUDOR increases efficiency and versatility of RNAi screens to examine interconnected biological processes in C. elegans with high-throughput.  相似文献   

8.
The Asian long-horned beetle (ALB) Anoplophora glabripennis is a serious invasive forest pest in several countries, including the United States. Methods available to manage or eradicate this pest are extremely limited, but RNA interference (RNAi) technology is a potentially effective method to control ALB. In this study, we used sucrose feeding bioassay for oral delivery of double-strand RNA (dsRNA) to ALB larvae. 32P-labeled dsRNA orally delivered to ALB larvae using the sucrose droplet feeding method was processed to small interfering RNA. Feeding neonate larvae with dsRNA targeting genes coding for the inhibitor of apoptosis (IAP), vacuolar sorting protein SNF7 (SNF7), and snakeskin (SSK) induced knockdown of target genes and mortality. Feeding 2 µg of dsRNA per day for 3 days did not induce a significant decrease in the expression of target genes or mortality. However, feeding 5 or 10 µg of dsRNA per day for 3 days induced a significant decrease in the expression of target genes and 50–90% mortality. Interestingly, feeding 2.5 µg each of dsIAP plus dsSNF7, dsIAP plus dsSSK, or dsSNF7 plus dsSSK per day for 3 days induced a significant decrease in the expression of both target genes and approximately 80% mortality. Our findings demonstrate that orally delivered dsRNA induces target gene knockdown and mortality in ALB neonate larvae and RNAi technology may have the potential for effective ALB control.  相似文献   

9.
Epigenetic information can be inherited over multiple generations, which is termed as transgenerational epigenetic inheritance (TEI). Although the mechanism(s) of TEI remains poorly understood, noncoding RNAs have been demonstrated to play important roles in TEI. In many eukaryotes, double‐stranded RNA (dsRNA) triggers the silencing of cellular nucleic acids that exhibit sequence homology to the dsRNA via a process termed RNA interference (RNAi). In Caenorhabditis elegans, dsRNA‐directed gene silencing is heritable and can persist for a number of generations after its initial induction. During the process, small RNAs and the RNAi machinery mediate the initiation, transmission and re‐establishment of the gene silencing state. In this review, we summarise our current understanding of the underlying mechanism(s) of transgenerational inheritance of RNAi in C. elegans and propose that multiple RNAi machineries may act cooperatively to promote TEI.  相似文献   

10.
In the last decade, C. elegans has emerged as an invertebrate organism to study interactions between hosts and pathogens, including the host defense against gram-negative bacterium Salmonella typhimurium. Salmonella establishes persistent infection in the intestine of C. elegans and results in early death of infected animals. A number of immunity mechanisms have been identified in C. elegans to defend against Salmonella infections. Autophagy, an evolutionarily conserved lysosomal degradation pathway, has been shown to limit the Salmonella replication in C. elegans and in mammals. Here, a protocol is described to infect C. elegans with Salmonella typhimurium, in which the worms are exposed to Salmonella for a limited time, similar to Salmonella infection in humans. Salmonella infection significantly shortens the lifespan of C. elegans. Using the essential autophagy gene bec-1 as an example, we combined this infection method with C. elegans RNAi feeding approach and showed this protocol can be used to examine the function of C. elegans host genes in defense against Salmonella infection. Since C. elegans whole genome RNAi libraries are available, this protocol makes it possible to comprehensively screen for C. elegans genes that protect against Salmonella and other intestinal pathogens using genome-wide RNAi libraries.  相似文献   

11.
12.
《Autophagy》2013,9(2):93-95
The role of autophagy in ageing regulation has been suggested based on studies in C. elegans, in which knockdown of the expression of bec-1 (ortholog of the yeast and mammalian autophagy genes ATG6/VPS30 and beclin 1, respectively) shortens the lifespan of the daf-2(e1370) mutant C. elegans. However, Beclin1/ATG6 is also known to be involved in other cellular functions in addition to autophagy. In the current study, we knocked down two other autophagy genes, atg-7 and atg-12, in C. elegans using RNAi. We showed that RNAi shortened the lifespan of both wild type and daf-2 mutant C. elegans, providing strong support for a role of autophagy in ageing regulation.  相似文献   

13.
Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism.  相似文献   

14.

Background

The approach of RNAi mediated gene knockdown, employing exogenous dsRNA, is being beneficially exploited in various fields of functional genomics. The immense utility of the approach came to fore from studies with model system C. elegans, but quickly became applicable with varied research models ranging from in vitro to various in vivo systems. Previously, there have been reports on the refractoriness of the neuronal cells to RNAi mediated gene silencing following which several modulators like eri-1 and lin-15 were described in C. elegans which, when present, would negatively impact the gene knockdown.

Methodology/Principal Findings

Taking a clue from these findings, we went on to screen hypothesis-driven- methodologies towards exploring the efficiency in the process of RNAi under various experimental conditions, wherein these genes would be knocked down preceding to, or concurrently with, the knocking down of a gene of interest. For determining the efficiency of gene knockdown, we chose to study visually stark phenotypes of uncoordinated movement, dumpy body morphology and blistered cuticle obtained by knocking down of genes unc-73, dpy-9 and bli-3 respectively, employing the RNAi-by-feeding protocol in model system C. elegans.

Conclusions/Significance

Our studies led to a very interesting outcome as the results reveal that amongst various methods tested, pre-incubation with eri-1 dsRNA synthesizing bacteria followed by co-incubation with eri-1 and gene-of-interest dsRNA synthesizing bacteria leads to the most efficient gene silencing as observed by the analysis of marker phenotypes. This provides an approach for effectively employing RNAi induced gene silencing while working with different genetic backgrounds including transgenic and mutant strains.  相似文献   

15.
In nematodes, genome-wide RNAi-screening has been widely used as a rapid and efficient method to identify genes involved in the aging processes. By far the easiest way of inducing RNA interference (RNAi) in Caenorhabditis elegans is by feeding Escherichia coli that expresses specific double stranded RNA (dsRNA) to knockdown translation of targeted mRNAs. However, it has been shown that E. coli is mildly pathogenic to C. elegans and this pathogenicity might influence aging and the accuracy of the RNAi-screening during aging may as well be affected. Here, we describe a novel system that utilizes the non-pathogenic bacterium Bacillus subtilis, to express dsRNA and therefore eliminates the effects of bacterial pathogenicity from the genetic analysis of aging.  相似文献   

16.
17.
18.
Dicer ribonucleases of plants and invertebrate animals including Caenorhabditis elegans recognize and process a viral RNA trigger into virus-derived small interfering RNAs (siRNAs) to guide specific viral immunity by Argonaute-dependent RNA interference (RNAi). C. elegans also encodes three Dicer-related helicase (drh) genes closely related to the RIG-I-like RNA helicase receptors which initiate broad-spectrum innate immunity against RNA viruses in mammals. Here we developed a transgenic C. elegans strain that expressed intense green fluorescence from a chromosomally integrated flock house virus replicon only after knockdown or knockout of a gene required for antiviral RNAi. Use of the reporter nematode strain in a feeding RNAi screen identified drh-1 as an essential component of the antiviral RNAi pathway. However, RNAi induced by either exogenous dsRNA or the viral replicon was enhanced in drh-2 mutant nematodes, whereas exogenous RNAi was essentially unaltered in drh-1 mutant nematodes, indicating that exogenous and antiviral RNAi pathways are genetically distinct. Genetic epistatic analysis shows that drh-1 acts downstream of virus sensing and viral siRNA biogenesis to mediate specific antiviral RNAi. Notably, we found that two members of the substantially expanded subfamily of Argonautes specific to C. elegans control parallel antiviral RNAi pathways. These findings demonstrate both conserved and unique strategies of C. elegans in antiviral defense.  相似文献   

19.
Uncover Genetic Interactions in Caenorhabditis elegans by RNA Interference   总被引:1,自引:0,他引:1  
RNA-mediated interference (RNAi) has emerged recently as one of the most powerful functional genomics tools. RNAi has been particularly effective in the nematode worm C. elegans where RNAi has been used to analyse the loss-of-function phenotypes of almost all predicted genes. In this review, we illustrate how RNAi has been used to analyse gene function in C. elegans as well as pointing to some future directions for using RNAi to examine genetic interactions in a systematic manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号