首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary

This study was conducted to examine the nutritional value of eight algal diets for two species of abalone, Haliotis tuberculata and Haliotis discus hannai, by measuring biochemical composition of the algae and relating this to feeding rate, growth and biochemical composition of the animals. Nutritional value of algal diets can be divided into three categories for each species of abalone. For H. tuberculata the best performance was on the mixed diet and Palmaria palmata intermediate was Alaria esculenta, Ulva lactuca and Laminaria digitata, and lowest growth was on Laminaria saccharina and Chondrus crispus. For H. discus hannai, best performance was on A. esculenta, P. palmata and the mixed diet; intermediate was on L. saccharina and L. digitata and lowest was on U. lactuca. It is generally accepted that high “balanced” levels of protein (>15%), lipid (3–5%) and carbohydrate (20–30%), with no detrimental substances in natural algae are essential for optimal growth performance of these abalone. The fact that A. esculenta, L. saccharina and U. lactuca had different dietary values for the two abalone species indicates specific nutritive requirements and/or digestive physiology. Overall, H. tuberculata grew faster, had higher food conversion efficiencies and muscle yield than H. discus hannai. Generally abalone fed on the highest category diets, had higher muscle yields and levels of protein, visceral lipids and muscle carbohydrate. Viscera and foot muscle are reservoirs for lipid and carbohydrate, respectively. The effect of algal diet on sexual maturation is similar to that on somatic growth.  相似文献   

3.
Acid-soluble collagens were prepared from connective tissues in the abalone Haliotis discus foot and adductor muscles with limited proteolysis using pepsin. Collagen preparation solubilized with 1% pepsin contained two types of alpha-chains which were different in their N-terminal amino acid sequences. Accordingly, two types of full-length cDNAs coding for collagen proalpha-chains were isolated from the foot muscle of the same animal and these proteins were named Hdcols (Haliotis discus collagens) 1alpha and 2alpha. The two N-terminal amino acid sequences of the abalone pepsin-solubilized collagen preparation corresponded to either of the two sequences deduced from the cDNA clones. In addition, several tryptic peptides prepared from the pepsin-solubilized collagen and fractionated by HPLC showed N-terminal amino acid sequences identical to those deduced from the two cDNA clones. Hdcols 1alpha and 2alpha consisted of 1378 and 1439 amino acids, respectively, showing the primary structure typical to those of fibril-forming collagens. The N-terminal propeptides of the two collagen proalpha-chains contained cysteine-rich globular domains. It is of note that Hdcol 1alpha completely lacked a short Gly-X-Y triplet repeat sequence in its propeptide. An unusual structure such as this has never before been reported for any fibril-forming collagen. The main triple-helical domains for both chains consisted of 1014 amino acids, where a supposed glycine residue in the triplet at the 598th position from the N-terminus was replaced by alanine in Hdcol 1alpha and by serine in Hdcol 2alpha. Both proalpha-chains of abalone collagens contained six cysteine residues in the carboxyl-terminal propeptide, lacking two cysteine residues usually found in vertebrate collagens. Northern blot analysis demonstrated that the mRNA levels of Hdcols 1alpha and 2alpha in various tissues including muscles were similar to each other.  相似文献   

4.
The abalone, Haliotis asinina, is a large, highly active tropical abalone that feeds at night on shallow coral reefs where oxygen levels of the water may be low and the animals can be exposed to air. It is capable of more prolonged and rapid exercise than has been reported for temperate abalone. These unusual behaviours raised the question of whether H. asinina possesses enhanced capacities for aerobic or anaerobic metabolism. The blood oxygen transport system of H. asinina resembles that of temperate abalone in terms of a large hemolymph volume, similar hemocyanin concentrations, and in most hemocyanin oxygen binding properties; however, absence of a Root effect appears confined to hemocyanin from H. asinina and may assist oxygen uptake when hemolymph pH falls during exercise or environmental hypoxia. During exposure to air, H. asinina reduces oxygen uptake by at least 20-fold relative to animals at rest in aerated seawater, and there is no significant ATP production from anaerobic glycolysis or phosphagen hydrolysis in the foot or adductor muscles. This slowing of metabolism may contribute to survival at lower water oxygen levels than normally encountered by most temperate abalone. While crawling speeds of H. asinina in water are not exceptionally high, an aerobic expansibility of 5.5-fold at speeds less than 20% of maximum is more than 2.7-fold greater than reported for several temperate abalone. The high aerobic expansibility also supports the enhanced frequency and duration of flipping behaviour without recourse to the additional inputs from anaerobic glycolysis required by other abalone. Metabolic profiles of foot and adductor muscles of H. asinina are similar to those of other abalone. Common features are low activities of enzymes unique to aerobic ATP production, relatively high activities of arginine kinase, tauropine and d-lactate dehydrogenase as the predominant pyruvate reductases, and low intracellular pH buffering capacities. It is concluded that the exceptional abilities of H. asinina for prolonged and rapid exercise are supported by higher rates of aerobic metabolism rather than any enhanced capacity for anaerobic muscle work. It is unexpected, and instructive, that the exceptional aerobic expansibility is not apparent in obvious adjustments of the blood oxygen delivery system or muscle properties associated with aerobic ATP production. The absence of a hemocyanin Root effect, and the extent to which both aerobic and anaerobic metabolism can be reduced may be special features that assist prolonged exercise and survival of H. asinina when environmental oxygen becomes limiting.  相似文献   

5.
Inheritance of 9 microsatellite loci was examined in 3 families of gynogenetic Pacific abalone Haliotis discus hannai produced by fertilizing eggs with UV-irradiated sperm followed by inhibition of the second meiotic division. The proportion of heterozygous progeny was used to estimate marker-centromere (M-C) distances. All loci conformed to Mendelian segregation in the control crosses when null alleles were accounted for. The absence of paternal alleles confirmed the gynogenetic origin of the offspring and indicated 100% success for 3 families. Estimated recombinant frequencies ranged from 0.10 to 0.60, which is lower than those observed in other gynogenetic diploid animals. The mean recombination frequency was 0.22, corresponding to a fixation index of 0.78 in one generation. This is 3.12 times the increase in homozygosity expected after one generation of sib mating (0.25), suggesting meiotic gynogenesis may be an effective means of rapid inbreeding in the abalone. M-C map distances for the 9 loci varied between 5 and 30 cM under the assumption of complete interference. The information about M-C distances will be useful for future gene mapping in H. discus hannai.  相似文献   

6.
Proteomic analysis was performed on the eggs of hybrid abalone and their corresponding parental lines. A total of 915 ± 19 stained protein spots were detected from Haliotis discus hannai♀ × H. discus hannai♂ (DD), 935 ± 16 from H. gigantea♀ × H. gigantea♂ (GG) and 923 ± 13 from H. gigantea♀ × H. discus hannai♂ (GD). The spots from DD and GD were clustered together. The distance between DD and GG was maximal by hierarchical cluster analysis. A total of 112 protein gel spots were identified; of these, 59 were abalone proteins. The proteins were involved in major biological processes including energy metabolism, proliferation, apoptosis, signal transduction, immunity, lipid metabolism, electron carrier proteins, protein biosynthesis and decomposition, and cytoskeletal structure. Three of 20 differential expression protein spots involved in energy metabolism exhibited as upregulated in GD, 13 spots exhibited additivity, and four spots exhibited as downregulated in the offspring. Eleven protein spots were expressed at the highest level in DD. The proteins involved in stress responses included superoxide dismutase, peroxiredoxin 6, thioredoxin peroxidase and glutathione‐S‐transferase. Two of seven differential expression protein spots involved in response to stress exhibited as upregulated in GD, three exhibited additivity, and two exhibited as downregulated. These results might suggest that proteomic approaches are suitable for the analysis of hybrids and the functional prediction of abalone hybridization.  相似文献   

7.
The disk abalone Haliotis discus discus and the spiny top shell Turbo cornutus are edible gastropod species of high economic value, mainly in Asia. Mortality outbreaks and variations in worldwide stock abundance have been reported and suggested to be associated, at least in part, with pathogenic infections. Ecology, biology and immunology of both species are currently not well documented. The characterisation of the immune systems of these species is necessary to further assess the responses of H. discus discus and T. cornutus to environmental, chemical and disease stresses. In the present study, we investigated the morphology and immune-related activities of hemocytes in both species using light microscopy and flow cytometry. Two types of hemocytes were identified in the disk abalone hemolymph, blast-like cells and hyalinocytes; whereas four main hemocyte types were distinguished in the spiny top shell, blast-like cells, type I and II hyalinocytes, and granulocytes. Flow cytometric analysis also revealed differences between cell types in immune-related activities. Three subsets of hemocytes, defined by differing lysosomal characteristics, were observed in the hemolymph of the spiny top shell, and only one in the disk abalone. Phagocytic activity was higher in H. discus discus hemocytes than in T. cornutus hemocytes, and the kinetics of PMA-stimulated oxidative activity was different between hemocytes of the disk abalone and the spiny top shell. Finally our results suggest for the first time a predominant mitochondrial origin of oxidative activity in gastropod hemocytes.  相似文献   

8.

Introduction

Oxygen is essential for metabolic processes and in the absence thereof alternative metabolic pathways are required for energy production, as seen in marine invertebrates like abalone. Even though hypoxia has been responsible for significant losses to the aquaculture industry, the overall metabolic adaptations of abalone in response to environmental hypoxia are as yet, not fully elucidated.

Objective

To use a multiplatform metabolomics approach to characterize the metabolic changes associated with energy production in abalone (Haliotis midae) when exposed to environmental hypoxia.

Methods

Metabolomics analysis of abalone adductor and foot muscle, left and right gill, hemolymph, and epipodial tissue samples were conducted using a multiplatform approach, which included untargeted NMR spectroscopy, untargeted and targeted LC–MS spectrometry, and untargeted and semi-targeted GC-MS spectrometric analyses.

Results

Increased levels of anaerobic end-products specific to marine animals were found which include alanopine, strombine, tauropine and octopine. These were accompanied by elevated lactate, succinate and arginine, of which the latter is a product of phosphoarginine breakdown in abalone. Primarily amino acid metabolism was affected, with carbohydrate and lipid metabolism assisting with anaerobic energy production to a lesser extent. Different tissues showed varied metabolic responses to hypoxia, with the largest metabolic changes in the adductor muscle.

Conclusions

From this investigation, it becomes evident that abalone have well-developed (yet understudied) metabolic mechanisms for surviving hypoxic periods. Furthermore, metabolomics serves as a powerful tool for investigating the altered metabolic processes in abalone.
  相似文献   

9.
Ferritin plays a key role in cellular iron metabolism, which includes iron storage and detoxification. From disk abalone, Haliotis discus discus, the cDNA that encodes the two ferritin subunits abalone ferritin subunit 1 (Abf1) and abalone ferritin subunit 2 (Abf2) were cloned. The complete cDNA coding sequences for Abf1 and Abf2 contained 621 and 549 bp, encoding for 207 and 183 amino acid residues, respectively. The H. discus discus Abf2 subunit contained a highly conserved motif for the ferroxidase center, which consists of seven residues of a typical vertebrate heavy-chain ferritin with a typical stem-loop structure. Abf2 mRNA contains a 27 bp iron-responsive element (IRE) in the 5'UTR position. This IRE exhibited 96% similarity with pearl and Pacific oyster and 67% similarity with human H type IREs. However, the Abf1 subunit had neither ferroxidase center residues nor the IRE motif sequence; instead, it contained iron-binding region signature 2 (IBRS) residues. Recombinant Abf1 and Abf2 proteins were purified and the respective sizes were about 24 and 21 kDa. Abf1 and Abf2 exhibited iron-chelating activity 44.2% and 22.0%, respectively, at protein concentration of 6 microg/ml. Analysis of tissue-specific expression by RT-PCR revealed that Abf1 and Abf2 ferritin mRNAs were expressed in various abalone tissues, such as gill, mantle, gonad, foot and digestive tract in a wide distribution profile, but Abf2 expression was more prominent than Abf1.  相似文献   

10.
Summary The aorta of Sympetrum danae possesses two dorsal diverticula: one in the mesothorax and one in the metathorax. They are very similar in form and position. Each diverticulum has a dorsal valve through which blood is pumped from the wings down into the aorta. The wall of the aortic diverticula consists of two simple cell layers: an outer epidermis-like layer and an inner muscle layer. The nuclei of the muscle cells are situated close to the lumen of the diverticula. The mitochondria are evenly dispersed between the myofibrils and are often paired up on either side of the Z-band. The Z-bands are thick and fragmented. The length of the sarcomeres varies from 3.3 to 6.1 . The A-band length is about 3 . The myofibrils consist of thick (250 Å) and thin (85 Å) filaments. Each thick filament is surrounded by 9–12 thin filaments. The sarcoplasmic reticulum is well developed and separates the myofibrils with one or two layers. The T-tubules are flattened and branch irregularly like a two-dimensional tree between the lamellar myofibrils. Intercalated discs are observed.The peculiarities of the muscle of aortic diverticula in S. danae are discussed in relation to various muscles of other insects and arthropods.  相似文献   

11.
Six species of abalones (Haliotidae) are found on the Korean coasts. Identification and characterization of these abalones are usually based on morphologic characters. In this research we compared the partial sequences of the mitochondrial 16S ribosomal RNA and cytochrome c oxidase subunit I genes to identify species using molecular data and to determine their phylogenetic relationships. Sequence alignments and phylogenetic analysis revealed that the 6 species fell into 2 distinct groups which were genetically distant from each other and exhibited little internal phylogenetic resolution. One group included Haliotis discus hannai, H. discus discus, H. madaka, and H. gigantea, while the other group contained H. diversicolor supertexta and H. diversicolor diversicolor. The 16S rRNA sequences were relatively more conserved than to the COI sequences, but both gene sequences provided sufficient phylogenetic information to distinguish among the 6 species of Pacific abalone, and thus could be valuable molecular characters for species identification.  相似文献   

12.
The musculature of Testudinella patina was visualized using phalloidin-linked fluorescent dye by confocal laser scanning microscopy. The conspicuous broad retractors appear to be made up of five separate fibers, of which three anchor in the neck region whereas two extend into the corona. Besides the broad retractors, a total of five paired longitudinal retractors are present and all of them extend into the corona. Incomplete circular muscles are found in groups in the neck region and in the medial and posterior parts of the trunk. The foot musculature comprises eight thin ventral foot muscles and six thicker dorsal foot muscles that all extend from the foot basis to the distal part of the foot. At the basis of the foot, each of the dorsal foot muscles anchors on a smaller, S-shaped subterminal foot muscle. The foot musculature furthermore comprises one pair of paraterminal foot muscles that each anchors basally on a subterminal foot muscle, extends into the most proximal part of the foot and attaches on one of the dorsal foot muscles. The visceral musculature is composed of extremely delicate fibers and is restricted to an area around and posterior to the foot opening. The presence of incomplete circular muscles supports that these muscles are a basal trait for Rotifera, whereas the morphology of the broad retractors and foot muscles is much more specialized and may be autapomorphic for Testudinella or alternatively for this genus and its closest relatives. The present results stress that revealing muscles by staining may produce new information from even well-investigated species, and that this information may contribute to a better understanding of functional as well as phylogenetic aspects of rotifer biology.  相似文献   

13.
Biochemical changes in the body components during gonad maturation of the tropical abalone Haliotis varia were investigated using wild collected specimens from the Gulf of Mannar, on the southeast coast of India. The gonadosomatic index (GSI) and the hepatosomatic index (HSI) showed negative correlations throughout the study period as well as during the progression of gonad maturation stages. The highest GSI for both the sexes were in the ripe stages followed by late maturing stages. The HSI ranged from 2.97 to 6.71 in females, and 3.55 to 5.09 in males. Among the biochemical components analysed, lipid and carbohydrate contents showed significant variations in the different tissues of H. varia during the progress of gonad maturation. The highest protein content was in the foot muscle and the lowest was in the digestive gland. Total lipids in the ovary were always higher compared with that of the testis and the values ranged from 12.60 to 26.49%, registering the highest value in the ripe ovary. Gonad carbohydrate content was lower when the lipid content was higher, suggesting the conversion of carbohydrate to lipids. The present study demonstrates the role of nutrient translocation between body parts as an essential part of the reproductive physiology of abalone.  相似文献   

14.
G Di  X Luo  W You  J Zhao  X Kong  C Ke 《Heredity》2015,114(6):564-574
To understand the potential molecular mechanism of heterosis, protein expression patterns were compared from hybrids of Haliotis gigantea (G) and Haliotis discus hannai (D) using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight analyses. Expression differences were observed in muscle samples from the four groups with 673±21.0 stained spots for H. discus hannai ♀ × H. discus hannai ♂ (DD), 692±25.6 for H. gigantea ♀ × H. gigantea ♂ (GG), 679±16.2 for H. discus hannai ♀ × H. gigantea ♂ (DG) (F1 hybrid) and 700±19 for H. gigantea ♀ × H. discus hannai ♂ (GD) (F1 hybrid). Different 2-DE image muscle protein spots had a mirrored relationship between purebreds and the F1 hybrid, suggesting that all stained spots in F1 hybrid muscle were on 2-DEs from parents. DD and DG clustered together first, and then clustered with GD, whereas the distance of DD and GG was maximal according to hierarchical cluster analysis. We identified 136 differentially expressed protein spots involved in major biological processes, including energy metabolism and stress response. Most energy metabolism proteins were additive, and stress-induced proteins displayed additivity or over-dominance. In these 136 identified protein spots, hybrid offspring with additivity or over-dominance accounted for 68.38%. Data show that a proteomic approach can provide functional prediction of abalone interspecific hybridization.  相似文献   

15.
16.
Withering syndrome in California red abalone (Haliotis rufescens) is caused by the Rickettsiales-like prokaryote (WS-RLP) Candidatus Xenohaliotis californiensis. WS-RLP infection is not sufficient to cause withering syndrome, and for reasons not yet well understood additional stressors such as elevated water temperature appear to influence disease development. Using nuclear magnetic resonance (NMR) based metabolomics, we have investigated the influence of food availability, temperature, and bacterial infection, both individually and in combination, on the metabolic status of the red abalone. Food limitation caused dramatic reductions in all observed classes of foot muscle metabolites, while at the same time metabolite levels within the digestive gland were preserved or increased. We also found that food limitation in combination with elevated temperature led to greater metabolic perturbations in both tissue types than those observed under food limitation alone. WS-RLP infection and food-limitation resulted in many of the same metabolic changes within the tissues studied, although the effects of infection were less severe. We observed increased levels of homarine in the digestive gland of both food-limited and WS-RLP-infected animals, yet only observed increased homarine levels in the foot muscle of infected abalone. These results further support the recently established glucose-to-homarine ratio in foot muscle as a potential marker for differentiating WS-RLP-infected animals from those of both healthy and food limited abalone. Furthermore, we found that the NMR metabolic data correlates well with histological measurements supporting the use of the metabolomics approach for characterizing both normal and pathological events in marine species, particularly during periods of environmentally relevant stress.  相似文献   

17.
The settlement, early growth and survival of the larval abalone Haliotis discus hannai in response to eight monospecific benthic diatoms were examined in the laboratory. Postlarvae showed active settling and feeding behaviour in all diatom species and in naturally occurring diatoms. Larval settlement rates differed significantly between experimental substrata after 24 h and 48 h. Nitzschia sp. (96.67 %), Hantzschia amphioxys var. leptocephala (95.00 %) and Navicula seminulum (90.00 %) strongly induced larval settlement of H. discus hannai. Postlarvae could feed on benthic diatoms (< 36 μm in shell length) with both weak and strong adhesion on the 4th day after settlement. Greatest growth (shell length) occurred on Nitzschia sp. (786.84 μm ± 2.50 SE and 773.09 μm ± 2.09 SE). Survival of postlarvae was also greatest on Nitzschia sp. (95.33 % ± 1.45 SE). These results indicate the effectiveness of Nitzschia sp., H. amphioxys var. leptocephala, N. seminulum, Rhaphoneis surirella and Navicula corymbosa as single species over natural diatoms in larval settlement and postlarvae growth of H. discus hannai. Thus, Nitzschia sp. has the best potential diet for larval settlement and postlarvae growth of H. discus hannai. H. amphioxys var. leptocephala and N. seminulum can be used as cues to induce larvae settlement, and R. surirella and N. corymbosa can be used as food for growing postlarval.  相似文献   

18.
The adductor mandibulae complex has been a subject of discussion and uncertainties due to a wide range of differentiations that have occurred in teleosts during evolution. In Siluroidei a specific modification of a part of the muscle complex has resulted in the formation of a retractor muscle of the maxillary barbel. The main part of the muscle complex, responsible for the closure of the mouth, has undergone some changes as well, which are at the base of the homology problems encountered by different authors. In this paper the muscles have been studied in three ontogenetic stages of the siluroid Clarias gariepinus (Clariidae); two of them have been described. Based on the ontogenetic evidence and the literature, the following muscles are recognized: 1) the very weakly differentiated adductor mandibulae A2A'3, where only little distinction can be made between the A2 and the A'3 muscle parts, and 2) the adductor mandibulae A“3. Caudally, both muscles are separated from each other by the levator arcus palatini, but are fused together anteriorly, inserting onto the lower jaw. In juvenile C. gariepinus, a differentiation has occurred in the A”3 muscle, thereby forming a distinct pars superficialis and a pars profunda. No A1 nor an Aω muscle is present. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Species identification based on biochemical and molecular techniques has a broad range of applications. These include compliance enforcement, the management and conservation of marine organisms, and commercial quality control. Abalone poaching worldwide and illegal trade in abalone products have increased mainly because of the attractive prices obtained and caused a sharp decline in stocks. Alleged poachers have been acquitted because of lack of evidence to correctly identify species. Therefore, a robust method is required that would identify tissue of abalone origin to species level. The aim of this study was to develop immunologic techniques, using monoclonal and polyclonal antibodies, to identify 10 different abalone species and subspecies from South Africa, the United States, Australia, and Japan. The combination of 3 developed monoclonal antibodies to South African abalone (Haliotis midae) enabled differentiation between most of the 10 species including the subspecies H. diversicolor supertexta and H. diversicolor diversicolor. In a novel approach, using antibodies of patients with allergy to abalone, the differentiation of additional subspecies, H. discus discus and H. discus hannai, was possible. A field-based immunoassay was developed to identify confiscated tissue of abalone origin.  相似文献   

20.
We present novel microsatellite markers of the Japanese abalone (Haliotis discus hannai) for general mapping studies in this species. A total of 75 microsatellite markers were developed, and the allele-transmission patterns of these markers were studied in three families generated by pair crosses. For allele scoring, we employed the 5′-tailed primer polymerase chain reaction (PCR) technique, which substantially reduces the cost for fluorescent labeling of primers. Of the 225 possible marker-family combinations (75 markers × 3 families), 18 cases of informative null-allele segregation were inferred. When such null-allele segregations were allowed, more than 70% of the 75 markers in the families turned out to be markers with an expected segregation ratio of 1:1:1:1, allowing maximal exploitation of the codominant nature of microsatellite markers. There were 16 instances of segregation distortion at the 5% significance level. The test for independence of segregation assigned the 75 markers into 17 linkage groups, which is in close agreement with the haploid chromosome number of H. discus hannai (n = 18). Six markers could not be placed into any linkage group. We suggest that these markers could help construct a H. discus hannai linkage map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号