首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Summary Nitrogen fixing trees and shrubs may be useful in revegetation efforts. Speculation that insufficient endophyte populations in surface soils may limit non-leguminous symbiotic nitrogen fixation in marginal land was explored.Purshia tridentata andP. glandulosa seedlings were grown in greenhouse trials using ten soils from nativePurshia sites. Treatments include a control, an inoculated treatment, and six mmole nitrogen amendment. When inoculated with aP.tridentata crushed nodule inoculum, two of five non-nodulating soils and three sparsely nodulating soils produced well nodulated plants. Inoculation also increased nodule mass, total nitrogen, nitrogen content and shoot dry mass in plants from some of the soils. Of the three soils failing to produce nodulated plants when inoculated, one produced plants that responded well to nitrogen additions but failed to nodulate under low nitrogen conditions; another produced severely stunted plants indicating nutritional limitations on the host; and the third produced plants that were not nitrogen deficient. An application of nitrogen completely suppressed nodulation in all but one soil. The twoPurshia species were similar in nodulation, nitrogen fixation and growth, although important exceptions exist that indicate species may differ in adaptability to certain soil conditions.  相似文献   

2.
Summary The inoculation ofAlnus rubra (red alder) withFrankia sp. can lead to a highly efficient symbiosis. Several factors contribute to the successful establishment of nitrogenfixing nodules: (1) quantity and quality ofFrankia inoculant; (2) time and method of inoculation; (3) nutritional status of the host plant.Frankia isolates were screened for their ability to nodulate and promote plant growth of container-grown red alder. Inoculations were performed on seedlings and seeds. Apparent differences in symbiotic performance could be seen when seeds or seedlings were inoculated. Plants inoculated at planting performed significantly better than those inoculated four weeks later in terms of shoot height, nodule number and shoot dry weight. If inoculation was delayed further, reduction in shoot height, nodule number and shoot dry weight resulted. The effect of fertilizer was also investigated with regard to providing optimal plant growth after inoculation. Plants receiving 1/5 Hoagland's solution minus nitrogen showed maximal plant growth with abundant nodulation. Plants receiving 1/5 Hoagland's solution with nitrogen showed excellent plant growth with significantly reduced nodulation.  相似文献   

3.
We have analysed the growth and symbiotic performance of actinorhizal Discaria trinervis at various Ca supply regimes. We aimed at discriminating between specific, if any, effects on nodulation and general growth stimulation by Ca. The hypothesis that a high Ca supply would interfere with nodulation by Frankia was also tested. Results showed that plant growth increased with Ca supply. Nodulation was stimulated by moderate levels of Ca, but inhibited by Ca higher than 0.77 mM. Growth of nodules was less affected by Ca than shoot and root growth. Ca concentration of symbiotic plants increased with Ca supply, but nitrogen concentration was independent of Ca at concentrations which did not impair plant growth. All together, these results show that Ca has a positive effect on the establishment and functioning of the symbiosis between Discaria trinervis and Frankia. However, the positive influence of Ca was more likely due to a promotion of plant growth rather than a direct effect on nodule growth and nitrogen fixation itself. At high levels of Ca supply nodulation was impaired. Given the intercellular infection pathway in Discaria trinervis, we suggest that the increment of Ca availability would strengthen its root cell walls, thus decreasing Frankia penetration of the root.  相似文献   

4.
In the present study, we examined the effects of iron deficiency in an acid solution and in an alkaline solution containing bicarbonate on the growth and nodulation of peanuts inoculated with different bradyrhizobial strains or supplied with fertilizer nitrogen.Inadequate iron supply in acid solution decreased the number of nodule initials, nodule number and nodule mass. Alleviating the iron deficiency increased acetylene reduction but not bacteroid numbers in nodules. Nitrogen concentrations in shoots of inoculated plants increased as iron concentrations in solution increased when determined at day 30 but not at day 50. Higher iron concentrations in solution were required for maximum growth of plants reliant on symbiotic nitrogen fixation than for those receiving fertilizer nitrogen.Adding bicarbonate to the solution with 7.5 M Fe markedly depressed nodule formation. This effect was much more severe than that of inadequate iron supply alone. Bicarbonate also decreased nitrogenase activity but did not decrease bacteroid concentrations in nodules.Both NC92 and TAL1000 nodulated peanuts poorly when bicarbonate was present. However, an interaction between iron concentrations in acid solutions and Bradyrhizobium strains on nodulation of peanuts was observed. Alleviating iron deficiency increased the number of nodule initials and nodules to a much greater extent for plants inoculated with TAL1000 than for plants inoculated with NC92.  相似文献   

5.
It is well established that nitrate is a potent inhibitor of nodulation and nitrogen fixation in legumes. The objective of this study was to demonstrate the relative insensitivity of these processes to nitrate with Calopogonium mucunoides, a tropical South American perennial legume, native to the cerrado (savannah) region. It was found that nodule number was reduced by about half in the presence of high levels of nitrate (15 mM) but nodule growth (total nodule mass per plant) and nitrogen fixation (acetylene reduction activity and xylem sap ureide levels) were not affected. Other sources of N (ammonium and urea) were also without effect at these concentrations. At even higher concentrations (30 mM), nitrate did promote significant inhibition (ca. 50%) of acetylene reduction activity, but no significant reduction in xylem sap ureides was found. The extraordinary insensitivity of nodulation and N2 fixation of C. mucunoides to nitrate suggests that this species should be useful in studies aimed at elucidating the mechanisms of nitrate inhibition of these processes.  相似文献   

6.
The response ofAlnus glutinosa, Casuarina cunninghamiana, Elaeagnus angustifolia andMyrica cerifera to a range of substrate nitrogen levels in solution, in relation to plant growth, infection, nodulation and root fine structure was studied. Nine concentrations of potassium nitrate ranging from 0.05 to 3.0 mM, were tested on each of the species. Plants were inoculated withFrankia pure cultures after a two week exposure to one of the nine levels of added nitrate. After six more weeks with constant exposure to nitrate, plants were harvested and assayed. With the exception of Myrica, regression analyses of whole plant dry weights as a function of added nitrate were highly significant. There was a tendency for nodulated plants grown at intermediate levels of added nitrate to exhibit higher relative growth rates, probably due to the additive effect of substrate nitrogen and fixation of atmospheric nitrogen. The mean numbers of nodules per plant were, with the exception of Alnus, significantly higher at intermediate levels of added nitrate, as were mean nodule dry weights. A highly significant inverse relationship between nodule weight as a percentage of whole plant weight was found in Elaeagnus and Myrica. The observed response of Elaeagnus to added nitrate compared to other actinorhizal plants appears to demonstrate that root hair infected plants are much more sensitive to the inhibitory effects of added nitrate than plants infected by intercellular penetration. A sharp reduction in the presence of root hairs at high concentrations of nitrate was observed. This indicates that the inhibition of nodulation in some actinorhizal plant species results from nitrate induced root hair suppression.  相似文献   

7.
The effect of nitrate on the symbiotic properties of nitrate-reductase-deficient mutants of a strain of cowpea rhizobia (32H1), and of a strain of Rhizobium trifolii (TA1), were examined; the host species were Macroptilium atropurpureum (DC.) Urb. and Trifolium subterraneum L. Nitrate retarded initial nodulation by the mutant strains to an extent similar to that found with the parent strains. It is therefore unlikely that nitrite produced from nitrate by the rhizobia, plays a significant role in the inhibition of nodulation by nitrate. Nitrite is an inhibitor of nitrogenase, and its possible production in the nodule tissue by the action of nitrate reductase could be responsible for the observed inhibition of nitrogen fixation when nodulated plants are exposed to nitrate. However, the results of this investigation show that nitrogen fixation by the plants nodulated by parent or mutant strains was depressed by similar amounts in the presence of nitrate. No nitrite was detected in the nodules. Nodule growth, and to a lesser extent, the nitrogenase specific activity of the nodules (mol C2H4g–1 nodule fr. wt. h–1), were both affected by the added nitrate.  相似文献   

8.
Yun Yang 《Plant and Soil》1995,176(1):161-169
A study was conducted to investigate the effects of phosphorus on nodule formation and function in the Casuarina-Frankia symbiosis. The effects of P on growth and survival of Frankia in the rhizosphere was assessed by examing Frankia growth and survival in flasks of basal nutrient solution. There was no growth in the nutrient solution during the experimental period. However, the viability of Frankia in the nutrient solution without P supply was half that of the initial level, whereas, with P supply, there was only a minor decline during the first week. In a growth pouch experiment, supplying P increased plant and nodule growth, irrespective of P status of the inoculant Frankia culture. There were no effects of P status on any growth or nodulation parameters measured when the inoculants had been standardized on the basis of viability. In a split root experiment, Frankia inoculation and application of P together or separately did not cause any significant difference. This suggests that growth and nodulation respond only to total P supply. Increasing P from 0.1 to 10 M significantly increased plant growth but not N concentrations. Both nitrogen-fixation and nitrate supported growth were strongly increased as P increased from 0.1 to 1.0 M. This study indicates that P deficiency limits the growth of host plants more severely than nitrogen fixation processes and P deficiency on nodulation and symbiotic nitrogen fixation in Casuarina cunninghamiana operated indirectly via reducing host plant growth.  相似文献   

9.
We investigated the role of three autoregulation of nodulation (AON) genes in regulating of root and shoot phenotypes when responding to changing nitrogen availability in the model legume, Medicago truncatula. These genes, RDN1‐1 (ROOT DETERMINED NODULATION1‐1), SUNN (SUPER NUMERIC NODULES), and LSS (LIKE SUNN SUPERNODULAOR), act in a systemic signalling pathway that limits nodule numbers. This pathway is also influenced by nitrogen availability, but it is not well known if AON genes control root and shoot phenotypes other than nodule numbers in response to nitrogen. We conducted a controlled glasshouse experiment to compare root and shoot phenotypes of mutants and wild type plants treated with four nitrate concentrations. All AON mutants showed altered rhizobia‐independent phenotypes, including biomass allocation, lateral root length, lateral root density, and root length ratio. In response to nitrogen, uninoculated AON mutants were less plastic than the wild type in controlling root mass ratio, root length ratio, and lateral root length. This suggests that AON genes control nodulation‐independent root architecture phenotypes in response to nitrogen. The phenotypic differences between wild type and AON mutants were exacerbated by the presence of nodules, pointing to resource competition as an additional mechanism affecting root and shoot responses to nitrogen.  相似文献   

10.
Summary The influence of combined nitrogen (as ammonium nitrate) on the symbiotic performances of selected bacterial associations of four legumes was examined using sand culture.In barrel medic (Medicago tribuloides Desr.) and vetch (Vicia sativa L. andV. atropurpurea Desf.) bacterial partnerships of a host plant varied greatly in their nodulation responses to a range of amounts of nitrogen applied at sowing. Some bacterial strains exhibited varying degrees of stimulation of nodule number, growth and fixation by low or medium amounts of nitrogen. Higher levels of combined nitrogen depressed symbiosis. Other strain responses showed a severe restriction of symbiosis with any amount of added nitrogen.Seasonal influences conditioned symbiotic responses to combined nitrogen in an association of cowpea (Vigna sinensis End.) With a summer sowing small amounts of ammonium nitrate added at sowing benefited later symbiotic development. No such stimulation was evident in an autumn sowing and symbiotic injury from high levels of nitrogen was greater than in the summer sowing.The developing association of cowpea was found to be most sensitive to ammonium nitrate added just as the first leaves unfolded. Here damage was manifest in a permanent elevation of the top: root ratio with subnormal growth and functioning of nodules. Greatest benefit from added inorganic nitrogen followed applications made as the first nodules appeared on the primary root. In this case added combined nitrogen acted as an investment providing returns in additional fixation equivalent to 5–10 times the amount of nitrogen originally fed to the seedling and representing some 50 per cent greater total fixation than in minus-nitrogen controls.  相似文献   

11.
Summary Sodium nitrate applications ranging from 0.36 to 22.84 mM N were shown to depress rates of nodule formation and reduce total nitrogen fixation (acetylene reduction) in white clover plants grown in aseptic test tube culture.Low nitrate levels gave an initial depression in symbiotic activity but the reduction was of short duration and these treatments were subsequently associated with enhanced rates of nodule formation and nitrogen fixation. As a result, phenotypic variation appeared to be strongly differentially affected by the amount of nitrate present. A subsequent experiment suggested that much of the variation was a consequence of early enhancement of plant growth rates by low levels of nitrate followed by rapid depletion thus giving a transitory inhibitory effect. This was confirmed in a third experiment in which the range of nitrate concentration was held constant. Differential effects on variability in nodule formation and nitrogen fixation were then greatly reduced but there was still a residual level of plant-to-plant variation. The results have clear implications for selecting genetic variants capable of fixing di-nitrogen in the presence of combined N. The provision of a single limiting dose of combined nitrogen to a population containing individuals with inherently different growth rates can bring about variations in the phenotypic expression of symbiotic characters. These variations are unlikely to be based on genetic factors which have a direct and stable effect on nodule development and nitrogenase activity. The implications of the results for plant breeding are discussed.  相似文献   

12.
The effects of application of combined nitrogen fertilizer (ammonium nitrate or urea) on root-hair infection and nodulation of four grain legumes were studied. Young roots of each legume were inoculated with their compatible rhizobia. The application of the two forms of combined N either at the early stages of plant growth and/or at the time of nodule formation depressed root-hair curling, infection and nodulation. Infection of hairs on the primary roots was more sensitive to the N fertilizer than hair infection of secondary roots in bothVicia faba andPisum sativum. The nodule number and total fresh mass of the four legumes were drastically affected by fertilizer application. The combined N added both at early and at later stages significantly reduced the nodulation ofV. faba, Phaseolus vulgaris andVigna sinensis. The inhibitory effect of urea on nodulation ofP. sativum was only observed when the fertilizer was applied at the late stages of plant growth. It is concluded that, although the nodulation of the four legumes was suppressed by combined N, the initial events ofRhizobium-legume symbiosis (infection of roots and nodule initiation) are more sensitive to combined N than the stages after nodule formation.  相似文献   

13.
The supernodulating mutants of legumes lack the internal regulation of the number of symbiotic root nodules that harbour N2-fixing nodule bacteria. On one hand, these mutants represent an efficient tool for dramatic increase in the degree of rhizobial symbiosis development. The trait of released nodulation is often associated with the desirable resistance of nodule initiation and functioning to the inhibition by ambient nitrate. On the other hand, the more intense and stable atmospheric nitrogen fixation of supernodulated plants is devalued by plant growth depression that results from the disproportion between the photosynthetic capacity of the shoot and the catabolic demands of symbiotic nodules. The deleterious effects of excessive nodulation can be neutralised or alleviated by a breeding strategy aimed at creating an ideotype of N2-fixing legume. The growth depression can be diminished by the reduction in the nodule number typical for supernodulators, that is, 6–10-fold of the wild type, to the level found permissive for the particular crop. This shift should be accompanied with breeding aimed at the increased photosynthetic capacity of the shoot. Forage varieties of legumes represent a reserve of high photosynthetic and shoot growth capacity, thanks to a long-term breeding history for green biomass accumulation. Moreover, the deleterious effects of supernodulation are less perceived after introgression into the background of forage varieties in view of different criteria in their evaluation, such as nitrogen accumulation and biomass production per crop area unit. The growth of supernodulators can be further corrected by breeding for auxiliary traits such as long-vine shoot architecture, a longer vegetation period and late flowering. The same strategy is applicable to the compensation for inherent pleiotropic changes in plant development, which are often associated with primarily symbiotic mutations. Supporting evidence for the efficiency of the described approach has already been reported.  相似文献   

14.
Azide-resistant mutants ofAzorhizobium caulinodans strains Sb3, S78, SrR13 and SrS8 were isolated and screened for nitrate reductase activity. Selected nitrate reductase negative mutants were inoculated onSesbania bispinosa andS. rostrata under sterile conditions in chillum jars to study their symbiotic behavior. Azide-resistant mutants exhibited either similar or higher symbiotic effectiveness than the parent strain after 30 d of plant growth. Nodule mass, nitrogenase activity and uptake hydrogenase activity of the mutants varied depending on the host as well as on the plant growth stage. In comparison to wild-type parent strains, four azide-resistant mutants, Sb3Az18, S78Az21, SrR13Az17 and SrS8Az6 showed significant increase in nodulation and nitrogen fixation as well as shoot dry mass of the inoculated plants.  相似文献   

15.
The efficacy of the alumina system for differentiating between bean (Phaseolus vulgaris L.) genotypes for growth at different levels of phosphorus availability was determinated. In addition to response to P levels, comparisons were made between plants receiving N either from fertilizer or nitrogen fixation. When the cv. Carioca was provided with either 100 ppm of N or inoculated withRhizobium leguminosarum biovarphaseoli, differences in shoot dry weight and nodule number were related to P level. There was a greater proportion of green, ineffectivevs. red, active nodules at the low P concentration than at the higher P concentration. In a second experiment, two cvs., Puebla 152 and Carioca and the breeding line UW 24-21, either were inoculated with rhizobia or provided with 150ppm of N. Each genotype-nitrogen combination was grown at 8 levels of P. There was a positive effect of P level on shoot dry weight, nodule number and nodule mass. Root mass was affected less than nodule or shoot mass by the P level of the growth medium. Nodule mass, but not P concentration in the nodules, was affected by P level, whereas in the other plant tissues, P concentrations were lower at lower P levels in the media.  相似文献   

16.
Restricted availability of nitrogen compounds in soils is often a major limiting factor for plant growth and productivity. Legumes circumvent this problem by establishing a symbiosis with soil-borne bacteria, called rhizobia that fix nitrogen for the plant. Nitrogen fixation and nutrient exchange take place in specialized root organs, the nodules, which are formed by a coordinated and controlled process that combines bacterial infection and organ formation. Because nodule formation and nitrogen fixation are energy-consuming processes, legumes develop the minimal number of nodules required to ensure optimal growth. To this end, several mechanisms have evolved that adapt nodule formation and nitrogen fixation to the plant's needs and environmental conditions, such as nitrate availability in the soil. In this review, we give an updated view on the mechanisms that control nodulation.  相似文献   

17.
We isolated a recessive symbiotic mutant of Lotus japonicus that defines a genetic locus, LOT1 (for low nodulation and trichome distortion). The nodule number per plant of the mutant was about one-fifth of that of the wild type. The lot1 mutant showed a moderate dwarf phenotype and distorted trichomes, but its root hairs showed no apparent differences to those of the wild type. Infection thread formation after inoculation of Mesorhizobium loti was repressed in lot1 compared to that in the wild type. The nodule primordia of lot1 did not result in any aborted nodule-like structure, all nodules becoming mature and exhibiting high nitrogen fixation activity. The mutant was normally colonized by mycorrhizal fungi. lot1 also showed higher sensitivity to nitrate than the wild type. The grown-up seedlings of lot1 were insensitive to any ethylene treatments with regard to nodulation, although the mutant showed normal triple response on germination. It is conceivable that a nodulation-specific ethylene signaling pathway is constitutively activated in the mutant. Grafting experiments with lot1 and wild-type seedlings suggested that the root genotype mainly determines the low nodulation phenotype of the mutant, while the trichome distortion is regulated by the shoot genotype. Grafting of har1-4 shoots to lot1 roots resulted in an intermediate nodule number, i.e. more than that of lot1 and less than that of har1-4. Putative double mutants of lot1 and har1 also showed intermediate nodulation. Thus, it was indicated that LOT1 is involved in a distinct signal transduction pathway independent of HAR1.  相似文献   

18.
In a green-house experiment, five cultivars of Pisum sativum L. grown on soils from 10 different locations in Tunisia, showed significant differences in nodulation, shoot dry matter (shDM) yield and shoot nitrogen content (shNC). The effect of soil on biological nitrogen fixation, as evidenced by the number and weight of nodules, was mainly attributable to the available phosphorus content. Cate-Nelson ANOVA analysis established a critical value of soil test phosphorus (STP) of 20 mg P kg–1 soil for nodule weight and number for the majority of cultivars. Within cultivars, nodulation varied with maturation period and was correlated with shoot NC. Thus, the overall interaction of soil-P content and cultivar-maturation period were correlated positively with nodulation and to symbiotic effectiveness of strains of Rhizobium leguminosarum bv. viceae indigenous to these soils. Based on an antibiotic susceptibility test and main variable factor analysis of the data obtained, 70 isolates of Rhizobia that nodulate pea, obtained from soils from agricultural sites throughout Tunisia, were identified as belonging to 18 distinct strains. These classes were identified on the basis of symbiotic efficiency parameters (shoot DM yield and shoot NC) as: ineffective (33 isolates), moderately effective (27 isolates), and efficient strains (10 isolates). This study shows that the Mateur site, an agricultural area for millennia in the northern region of Tunisia, harbors rhizobial strains that are highly efficient in fixing N2 with peas. These results also indicate the importance of strain-cultivar interrelationships and specificity.  相似文献   

19.
? Premise of the Study: Because legumes can add nitrogen (N) to ecosystems through symbiotic fixation, they play important roles in many plant communities, such as prairies and grasslands. However, very little research has examined the effect of projected climate change on legume growth and function. Our goal was to study the effects of temperature on growth, nodulation, and N chemistry of prairie legumes and determine whether these effects are mediated by source of N. ? Methods: We grew seedlings of Amorpha canescens, Dalea purpurea, Lespedeza capitata, and Lupinus perennis at 25/20°C (day/night) or 28/23°C with and without rhizobia and mineral N in controlled-environment growth chambers. Biomass, leaf area, nodule number and mass, and shoot N concentration and δ(15)N values were measured after 12 wk of growth. ? Key Results: Both temperature and N-source affected responses in a species-specific manner. Lespedeza showed increased growth and higher shoot N content at 28°C. Lupinus showed decreases in nodulation and lower shoot N concentration at 28°C. The effect of temperature on shoot N concentration occurred only in individuals whose sole N source was N(2)-fixation, but there was no effect of temperature on δ(15)N values in these plants. ? Conclusions: Elevated temperature enhanced seedling growth of some species, while inhibiting nodulation in another. Temperature-induced shifts in legume composition or nitrogen dynamics may be another potential mechanism through which climate change affects unmanaged ecosystems.  相似文献   

20.
李友国  周俊初 《遗传学报》2002,29(2):181-188
以pTR102为载体构建重组质粒pHN307,其上克隆有来自昔蓿中华根瘤菌(Sinorthizobium meliloti)的四碳二羧酸转移酶基因dctABD、来自肺炎克氏杆菌(Klebsiella pneumoniae)的nifA基因和来自pDB30所含的发光酶基因lux-AB。经三亲本接合转移,将pHN307导入费氏中华根瘤菌(S.fredii)NH01、YC4和GR3,并考察了转移接合子中pHN307在传代培养和共生条件下的稳定性。与出发菌相比较的植物盆栽试验结果表明,在与大豆黑农33共生时,导入pHN307后的转移接合子均可显著提高结瘤植株的瘤重、地上部分干重和地上部分总氮量。在与大豆川早一号共生时,转移接合子HN01(pHN307)可显著提高结瘤植株的瘤数和瘤重;GR3(pHN307)可显著提高结瘤植株的瘤数、瘤重、地上部分干重和地上部分总氮量;导入pHN307的YC4却呈现出负作用。本研究表明,导入dctABD可提高固氮效率  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号