首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is now universally recognized that only a portion of aquatic bacteria is actively growing, but quantitative information on the fraction of living versus dormant or dead bacteria in marine sediments is completely lacking. We compared different protocols for the determination of the dead, dormant, and active bacterial fractions in two different marine sediments and at different depths into the sediment core. Bacterial counts ranged between (1.5 ± 0.2) × 108 cells g−1 and (53.1 ± 16.0) × 108 cells g−1 in sandy and muddy sediments, respectively. Bacteria displaying intact membrane (live bacterial cells) accounted for 26 to 30% of total bacterial counts, while dead cells represented the most abundant fraction (70 to 74%). Among living bacterial cells, nucleoid-containing cells represented only 4% of total bacterial counts, indicating that only a very limited fraction of bacterial assemblage was actively growing. Nucleoid-containing cells increased with increasing sediment organic content. The number of bacteria responsive to antibiotic treatment (direct viable count; range, 0.3 to 4.8% of the total bacterial number) was significantly lower than nucleoid-containing cell counts. An experiment of nutrient enrichment to stimulate a response of the dormant bacterial fraction determined a significant increase of nucleoid-containing cells. After nutrient enrichment, a large fraction of dormant bacteria (6 to 11% of the total bacterial number) was “reactivated.” Bacterial turnover rates estimated ranged from 0.01 to 0.1 day−1 but were 50 to 80 times higher when only the fraction of active bacteria was considered (on average 3.2 day−1). Our results suggest that the fraction of active bacteria in marine sediments is controlled by nutrient supply and availability and that their turnover rates are at least 1 order of magnitude higher than previously reported.  相似文献   

2.
We present an improvement of the INT [2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride)] reduction method using Cyto-Clear slides, the fluorochrome DAPI (4(prm1),6(prm1)-diamidino-2 phenylindole), and an image analysis system. With this method we were able to simultaneously measure cell dimensions and formazan crystals as indicators of the respiratory activity of single bacteria. The method was tested on a natural bacterioplankton community of an oligotrophic high mountain lake (Gossenkollesee, Tyrolean Alps, Austria, 2,417 m above sea level) in midwinter ((symbl)1-m-thick ice and snow layer; dissolved organic carbon, 0.51 mg liter(sup-1); water temperature, 2(deg)C). About 25% of planktonic bacteria were respiratorily active, and a complex pattern of bacterial morphologies and specific respiratory activities was observed during a time series of INT incubation. Rod-shaped bacteria with cell lengths of between 1.6 and 4.8 (mu)m already showed visible activity after 0.5 h of INT incubation. Small cells (rods and cocci) in the size fraction <1.6 (mu)m and long filamentous bacteria (up to 120 (mu)m) were visibly active only after a 2-h incubation period. After 8 h of incubation, more than 90% of all cells between 3.2 and 6.4 (mu)m in cell length were respiratorily active, whereas only 5% of cells <1.6 (mu)m and 50% of filamentous bacteria contained formazan grains. We could distinguish five major bacterial phenotypes that showed distinct activity patterns with respect to incubation period and numbers and sizes of formazan crystals. There was no correlation between the total formazan volume per active cell and bacterial cell volume, and for any size class of active bacteria, total formazan volumes varied by about 2 orders of magnitude after 8 h of incubation. This indicates that cell-specific activity is extremely variable and is not related to size and that a small portion of all cells may account for the overall activity.  相似文献   

3.
Total direct counts of bacterial abundance are central in assessing the biomass and bacteriological quality of water in ecological and industrial applications. Several factors have been identified that contribute to the variability in bacterial abundance counts when using fluorescent microscopy, the most significant of which is retaining an adequate number of cells per filter to ensure an acceptable level of statistical confidence in the resulting data. Previous studies that have assessed the components of total-direct-count methods that contribute to this variance have attempted to maintain a bacterial cell abundance value per filter of approximately 106 cells filter−1. In this study we have established the lower limit for the number of bacterial cells per filter at which the statistical reliability of the abundance estimate is no longer acceptable. Our results indicate that when the numbers of bacterial cells per filter were progressively reduced below 105, the microscopic methods increasingly overestimated the true bacterial abundance (range, 15.0 to 99.3%). The solid-phase cytometer only slightly overestimated the true bacterial abundances and was more consistent over the same range of bacterial abundances per filter (range, 8.9 to 12.5%). The solid-phase cytometer method for conducting total direct counts of bacteria was less biased and performed significantly better than any of the microscope methods. It was also found that microscopic count data from counting 5 fields on three separate filters were statistically equivalent to data from counting 20 fields on a single filter.  相似文献   

4.
Methods were investigated for the determination of activity levels of bacteria on sandstone using the reduction of 2-(4-iodophenyl)-3-(4 nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan as a measure of dehydrogenase activity. A microscopy technique, based on use of acridine orange with bright-field illumination, was developed which gave a good visual image of bacterial cells, including those containing INT-formazan. Surveys at two monuments, Portchester Castle and Tintern Abbey, were carried out using this method which showed that between 20.7 and 51.9% of bacterial cells present in situ were active. Extraction of INT-formazan directly from the stone using methanol indicated that bacteria were tightly bound to stone particles and that microscopic methods would underestimate counts of bacteria. Surveys of five monuments using the extraction method showed that microbial populations on sandstone in situ were active but activity could not be related to decay state of the stone.  相似文献   

5.
A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both ≤0.2 μm in size, were found for sample preparations that included a Nuclepore filter. Visual clarity was enhanced, and significantly greater direct counts and counts of INT-reducing microorganisms were recognized by transferring microorganisms from a filter to a gelatin film on a cover glass, followed by coating the sample with additional gelatin to produce a transparent matrix. With this method, the number of INT-reducing microorganisms determined for a Chesapeake Bay water sample was 2-to 10-fold greater than the number of respiring organisms reported previously for marine or freshwater samples. INT-reducing microorganisms constituted 61% of the total direct counts determined for a Chesapeake Bay water sample. This is the highest percentage of metabolically active microorganisms of any aquatic population reported using a method which determines both total counts and specific activity.  相似文献   

6.
We determined the quantity and metabolic status of bacteria and fungi in rhizosphere and nonrhizosphere soil from microcosms containing ponderosa pine seedlings. Rhizosphere soil was sampled adjacent to coarse, fine, or young roots. The biovolume and metabolic status of bacterial and fungal cells was determined microscopically and converted to total and active biomass values. Cells were considered active if they possessed the ability to reduce the artificial electron acceptor 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) to visible intracellular deposits of INT formazan. A colorimetric assay of INT formazan production was also used to assess dehydrogenase activity. INT-active microorganisms made up 44 to 55% of the microbial biomass in the soils studied. The proportion of fungal biomass that exhibited INT-reducing activity (40 to 50%) was higher than previous estimates of the active proportion of soil fungi determined by using fluorescein diacetate. Comparison between soils from different root zones revealed that the highest total and INT-active fungal biomass was adjacent to fine mycorrhizal roots, whereas the highest total and active bacterial biomass was adjacent to the young growing root tips. These observations suggest that fungi are enhanced adjacent to the fine roots compared with the nonrhizosphere soil, whereas bacteria are more responsive than fungi to labile carbon inputs in the young root zone. Colorimetric dehydrogenase assays detected gross differences between bulk and rhizosphere soil activity but were unable to detect more subtle differences due to root types. Determination of total and INT-active biomass has increased our understanding of the role of spatial compartmentalization of bacteria and fungi in rhizosphere carbon flow.  相似文献   

7.
It is now universally recognized that only a portion of aquatic bacteria is actively growing, but quantitative information on the fraction of living versus dormant or dead bacteria in marine sediments is completely lacking. We compared different protocols for the determination of the dead, dormant, and active bacterial fractions in two different marine sediments and at different depths into the sediment core. Bacterial counts ranged between (1.5 +/- 0.2) x 10(8) cells g(-1) and (53.1 +/- 16.0) x 10(8) cells g(-1) in sandy and muddy sediments, respectively. Bacteria displaying intact membrane (live bacterial cells) accounted for 26 to 30% of total bacterial counts, while dead cells represented the most abundant fraction (70 to 74%). Among living bacterial cells, nucleoid-containing cells represented only 4% of total bacterial counts, indicating that only a very limited fraction of bacterial assemblage was actively growing. Nucleoid-containing cells increased with increasing sediment organic content. The number of bacteria responsive to antibiotic treatment (direct viable count; range, 0.3 to 4.8% of the total bacterial number) was significantly lower than nucleoid-containing cell counts. An experiment of nutrient enrichment to stimulate a response of the dormant bacterial fraction determined a significant increase of nucleoid-containing cells. After nutrient enrichment, a large fraction of dormant bacteria (6 to 11% of the total bacterial number) was "reactivated." Bacterial turnover rates estimated ranged from 0.01 to 0.1 day(-1) but were 50 to 80 times higher when only the fraction of active bacteria was considered (on average 3.2 day(-1)). Our results suggest that the fraction of active bacteria in marine sediments is controlled by nutrient supply and availability and that their turnover rates are at least 1 order of magnitude higher than previously reported.  相似文献   

8.
Density,activity, and diversity of bacteria indigenous to a karstic aquifer   总被引:2,自引:0,他引:2  
The microbial ecology of karstic ground water is largely unknown. The density, activity, and diversity of bacteria indigenous to subsurface karstic material in Mammoth Cave National Park, Mammoth Cave, Kentucky were studied using minimally disruptive, on-site procedures. Two sites, located 100 m below the surface and consisting of saturated fine to coarse sand in pooled water, were examined. Samples were taken aseptically using modified, sterile 60-cc syringes. Total cell and total respiring cell densities were determined using an acridine orange/p-iodonitrotetrazolium violet (AO/INT) staining procedure. Cells in selected cores were stained with INT and incubated in the cave for 4 h prior to fixing with glutaraldehyde and subsequent transport to the laboratory. Cells were stained with AO in the laboratory. Low- and high-nutrient media were used to determine viable cell counts. Plates were incubated in the cave for 1 day at ambient temperature prior to transportation to the laboratory in an insulated cooler. Viable cell counts ranged from 1.0 × 106 to 8.1 × 106 cells wet g–1 of sediment. Total direct counts were 3.9 × 106 and 1.4 × 107 cells wet g–1 for the Olivia's Dome and the Catherine's Dome sites, respectively. Viable cell counts were highly similar to respiring cell counts at both sites. At the Olivia's Dome site, viable cell counts represented 26–31% of the direct cell counts, while 58% of the total cell count were actively respiring. At the Catherine's Dome site, viable cell counts represented 11–58% of the direct counts, while 53% of the cells were actively respiring. A total of 237 strains recovered from low- and high-nutrient media at both Olivia's and Catherine's Domes, and 10 reference strains were examined for 117 morphological, biochemical, and physiological characteristics. Results were coded in a binary fashion and analyzed using numerical taxonomic techniques. Similarity values were calculated using a simple matching coefficient. Fifty-two clusters, ranging in size from 2 to 13 members, were defined at the 80–85% similarity level with the weighted pair-group mathematical average algorithm (WPGMA). The matrix was examined using the Jaccard coefficient and WPGMA clustering to control for distortion due to negative matches and varying group size. Presumptively identified genera include, Arthrobacter, Brevibacterium, Bacillus, Cornyebacterium, Actinomyces, Aureobacterium, Chromobacterium, and Mycobacterium. Pseudomonas spp. were not recovered. Fifty percent of the clustered operational taxonomic units (OTUs) were not identified. Thirty percent of the clustered OTUs were irregular, asporogenous, Gram-positive rods. The bacterial communities varied between sites, and isolation medium had a strong influence on the strains recovered. The bacterial community in the karstic sediments sampled exhibits a high degree of diversity having no dominant strain or strains.Correspondence to: K.J. Rusterholtz  相似文献   

9.
[3H]thymidine incorporation, the rate of reduction of iodonitrotetrazolium violet (INT) to INT formazan normalized to DNA, and the ratio of ATP to DNA were adapted to measure the activity of attached and unattached microbial assemblages of Bayboro Harbor, Fla. Activity measurements by [3H]thymidine incorporation were made of cells attached to polystyrene culture dishes, in unfiltered water samples, and in the <1-μm-filtered fraction. In most cases, the activity of attached cells was greater than that of unattached cells either in unfiltered water samples or in the <1-μm fraction. The calculated thymidine incorporation rates for cells in the >1-μm fraction were higher than those for cells either in unfiltered water or in the <1-μm-filtered fraction. By the rate of reduction of INT to INT formazan normalized to DNA and by ATP-to-DNA ratios, attached cells were also more active than cells in unfiltered water samples. These results indicate that the microenvironment afforded by attachment is a more beneficial habitat for microbial growth. Reasons for greater activity by natural populations of attached bacteria are discussed.  相似文献   

10.
Abstract In natural bacterioplankton assemblages, only a fraction of the total cell count is active, and, therefore, rates of bacterial production should be more strongly correlated to the number of active cells than to the total number of bacteria. However, this hypothesis has seldom been tested. Herein we explore the relationship between rates of bacterial production (measured as leucine uptake) and the number of active bacteria in 14 lakes in southern Québec. Active bacteria are defined as those cells capable of reducing the tetrazolium salt CTC to its fluorescent formazan; these cells were enumerated using flow cytometry. Bacterial production varied two orders of magnitude in the lakes studied, as did the number of active bacteria, whereas the total number of bacteria varied by only sixfold. The number and proportion of active bacteria were similar among lake strata, but rates of bacterial production were highest in the epilimnion and lowest in the hypolimnion. As expected, bacterial production was better correlated to the number of active cells, and bacterial growth rates calculated for active cells ranged from 0.7 to 1.8 day−1, on average threefold higher than those calculated on the basis of total bacterial abundance. Growth rates scaled to active cells were, on average, similar among lake strata and did not show any pattern along a gradient of increasing chlorophyll concentration, so there was no systematic change of bacterial growth rates with lake productivity. In contrast, growth rates scaled to the entire bacterial assemblage were positively correlated to chlorophyll, were tenfold more variable among lakes than growth rates of active cells, and showed larger differences among lake strata. Scaling bacterial production to either the total number or the number of active cells thus results in very different patterns in bacterial growth rates among aquatic systems. Received: 12 July 1996; Accepted: 24 September 1996  相似文献   

11.
The electron transport system of respiring organisms reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan. Active bacterial cells may be recognized under the microscope by epifluorescence and by the simultaneous presence, seen under bright light field of optically dense intracellular deposits of INT-formazan. An improved procedure that leads to a sharp definition of cells and formazan deposits is presented here. Cells are concentrated on cellulose membrane filters of 0.1 μm porosity which are rendered further transparent prior to immersion of the cells in a layer of 4′, 6-diaminidino-2-phenylindole (DAPI) s′ fluorochrome. This process leads to two significant improvements: (1) the fluorochrome is not trapped inside the membrane, which decreases the background fluorescence and leads to a better detection of the small cells; (2) the cells are immersed in an aqueous solution, which prevents rapid dissolution of the formazan crystals which would be expected if they were in contact with oily clearing agents. Tests on formazan labelling and on storage of INT-processed samples suggest other precautions for reliable use. Improved in this way, the method is simple, rapid and has numerous applications in environmental studies, ecophysiology and ecotoxicology. Some examples are given, with 2 to 98% of INT reducing cells observed, depending on different environmental conditions.  相似文献   

12.
Flow cytometry (FCM) is a rapid and sensitive technique that can determine cell numbers and measure various physiological characteristics of individual cells by using appropriate fluorescent probes. Previously, we developed an FCM assay with the viability probes carboxyfluorescein diacetate (cFDA) and TOTO-1 {1′-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-methyl-2,3dihydro(benzo-1,3-oxazole)-2-methylidene]-1-(3′-trimethylammoniumpropyl)-pyridinium tetraiodide} for (stressed) lactic acid bacteria (C. J. Bunthof, K. Bloemen, P. Breeuwer, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 67:2326-2335, 2001). cFDA stains intact cells with enzymatic activity, and TOTO-1 stains membrane-permeabilized cells. Here we used this assay to study the viability of bacterial suspensions in milk, dairy fermentation starters, and probiotic products. To facilitate FCM analysis of bacteria in milk, a commercially available milk-clearing solution was used. The procedure was optimized to increase the signal-to-noise ratio. FCM enumerations were accurate down to a concentration of 105 cells ml−1. The level of retrieval of Lactobacillus plantarum WCFS 1 suspended in milk was high, and viability was not affected by the procedure. The plate counts for cleared samples of untreated cell suspensions were nearly as high as the total FCM counts, and the correlation was strong (r > 0.99). In dairy fermentation starters and in probiotic products the FCM total cell counts were substantially higher than the numbers of CFU. Three functional populations could be distinguished: culturable cells, cells that are intact and metabolically active but not culturable, and permeabilized cells. The proportions of the populations differed in the products tested. This FCM method provides tools to assess the functionality of different populations in fermentation starters and probiotic products.  相似文献   

13.
Summary The tetrazolium salt, 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) was used to determine viable respiring cells in batch cultures of Saccharomyces cerevisiae. Respiring cells reduce INT to water insoluble iodonitrotetrazolium formazan (INT-formazan) which is deposited within the respiring cell. The INT-formazan granules can be observed by brightfield microscopy. This allows a rapid quantitative determination of the percentage of respiring cells and total cells within the same microscopic field.In actively growing batch cultures of S. cerevisiae, the respiring cell count was equal to the total cell count for the first 72 h of the growth cycle. After 144 h of incubation only 22.7% of the total cell numbers were actively respiring.  相似文献   

14.
Reduction of tetrazolium salts by sulfate-reducing bacteria   总被引:2,自引:0,他引:2  
Abstract The reduction of tetrazolium salts by the sulfate-reducing bacteria, Desulfovibrio desulfuricans and Desulfotomaculum orientis , was examined. D. desulfuricans and D. orientis reduced triphenyltetrazolium chloride (TTC) and 2-( p -iodophenyl)-3-( p -nitrophenyl)-5-phenyltetrazolium chloride (INT) forming intracellular formazan deposits. The reduction rate of INT was higher than that of TTC. INT reduction was not inhibited by the addition of sulfate or molybdate, and sulfate uptake was inhibited by the addition of both INT and molybdate. The ratio of intracellular formazan forming cells to acridine orange direct counts in both strains decreased with culture age and starvation time.  相似文献   

15.
Summary Previous antarctic studies have pointed out the ecological importance of ornithogenic soils. However, few data exist to determine the impact of such guanoenriched soils on surrounding seawater microbial populations. In order to evaluate the influence of birds, the relationships of spatial distribution of seawater bacterial microflora to penguin repartition were studied during the antarctic summer 1986 in Terre Adelie land area and in January 1984 in the subantarctic Kerguelen Archipelago. With bacterial estimates as high as 1.7×108 cells ml-1 for total counts and 2.3×107 CFU ml-1 for aerobic heterotrophic populations, ornithogenic soil analyses confirmed previous results from similar sites. In seawater a clear decreasing gradient from the shore towards the open sea was found. All bacterial parameters studied (epifluorescence direct counts, frequency of dividing cells estimation and viable counts) were correlated significantly with penguin populations. Complementary numerical taxonomy confirmed the major role played by the bird manuring in such antarctic ecosystems.  相似文献   

16.
Bioluminescent biomass in pure cultures and in 94 samples of shallow and deep Fennoscandian Shield groundwater was analysed using a commercial ATP assay, and the results were compared with microscopic counts and counts based on cultivation methods. The assay appeared robust and reliable and had a detection range that covered all samples analysed. The detection limit in groundwater was determined to 2x10(3) cells ml(-1). ATP concentrations were found to correlate with the microscopic counts and with the volume and metabolic status of the investigated pure culture and groundwater cells. The results suggested that bacterial populations in deep groundwater vary significantly in size, and that metabolic activity is a function of prevailing environmental conditions. In cases in which analysis of the total and viable number of cells produced very low numbers, suggesting that the detected cells were of low viability, ATP analysis of the ratio of ATP to the total number of cells was able to verify such an interpretation of the obtained data.  相似文献   

17.
以植物乳杆菌ATCC8014为试材,研究超高压对其能量代谢的影响。建立了用氯化碘硝基四唑紫测定ATCC8014的INT代谢还原活性的比色法。用比色法测定了超高压对ATCC8014的INT代谢还原活性与葡萄糖利用的影响。试验结果表明,150~250MPa作用15min在MRS琼脂培养基上随着压力的增大菌落数显著降低,INT代谢还原活性降低显著,葡萄糖的利用变化不明显;超过300MPa后,葡萄糖的利用才显著降低;400MPa处理15min,尽管在MRS琼脂培养基上菌落数低于检测限,INT代谢还原活性为0%,而葡萄糖的利用能力仍为对照组的56.1%,超高压作用下ATCC8014的灭活与INT代谢还原活性的降低的相关性较好。说明ATCC8014的细胞膜上参与葡萄糖的吸收和运输的酶、糖酵解的酶与调节系统比三羧酸循环的酶与调节系统较耐压。三羧酸循环比糖酵解对超高压敏感,三羧酸循环的抑制是超高压灭活其的重要原因,这为了探讨超高压杀灭植物乳杆菌的机制提供了一定的理论依据。  相似文献   

18.
Abstract The relationships between bacterial concentration, bacterial production, and cell-specific activity of both free and attached bacteria and environmental factors such as suspended solids, nutrients, and temperature were examined in four lakes, two in New Zealand and two in Switzerland. Estimates of cell-specific production were obtained by microautoradiographic counts of [3H]thymidine-labeled cells. Bacteria attached to particles accounted for only 1.3 to 11.6% of the total bacterial abundance, but showed overall 20-fold higher specific growth rates and were relatively more active than their free counterparts. On average, 80 to 100% of epibacteria were attached to organic particles. The abundance and production of free and attached bacteria were positively correlated; however, relationships between these fractions and some environmental variables differed. Cell-specific activities of active bacteria were not equivalent to mean cellular activities of the entire bacterial community and differed in their relationship to trophic state. [3H]Thymidine-positive bacteria were more tightly linked to chlorophyll a than were total bacteria. Our findings indicate that production by attached bacteria, fueled by phytoplankton carbon, supplies ``new' free bacteria to the bacterial community. Our results support the idea that particulate organic matter acts as a source of dissolved nutrients to free bacteria. Bottom-up control of bacterial biomass, as shown by regressions of biomass vs production, appeared to be stronger in two ultraoligotrophic lakes than in two more eutrophic ones. Received: 17 April 1998; Accepted: 24 August 1998  相似文献   

19.
Some effects of visible light on the survival of Escherichia coli in waters of the Butrón river were studied by comparing illuminated and nonilluminated systems. The following count methods were used: CFU on a selective medium (eosin-methylene blue agar), CFU on a medium of recuperation (Trypticase soy agar with yeast extract and glucose), number of metabolically active cells by reduction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, and total number of E. coli cells as determined by the acridine orange direct-count method. In the illuminated systems, decreases in CFU of E. coli and in the number of metabolically active cells were observed. However, no decline of the total number of E. coli cells was observed. By count methods, different stages of progressive dormancy of E. coli cells were determined to exist in illuminated systems. Culturable and recoverable cells were defined as viable cells, and metabolically active cells and morphologically intact cells were defined as somnicells. Indirect activity measurements were also done by using [14C]glucose. In illuminated systems, a decrease of glucose uptake by E. coli cells was observed throughout the experiments. The assimilated fraction of [14C]glucose decreased faster than the respired fraction in illuminated systems. The percentage of respired [14C]glucose (14CO2 production) with respect to the total glucose uptake increased throughout the experiments, and the percentage of assimilated glucose decreased. Therefore, the visible light was also responsible for an additional inhibition of biosynthetic processes.  相似文献   

20.
《Cytotherapy》2014,16(2):181-190
Background aimsTraditional antibiotic therapy is based on the oral or systemic injection of antibiotics that are often unable to stop a deep infection (eg, osteomyelitis). We studied whether or not bone marrow stromal cells (BM-MSCs) are able to uptake and release ciprofloxacin (CPX), a fluoroquinolone considered the drug of choice for the treatment of chronic osteomyelitis because of its favorable penetration into poorly vascularized sites of infection.MethodsHuman bone marrow stromal cells (BM-MSCs) were primed with CPX (BM-MSCsCPX) according to a methodology previously standardized in our laboratory for paclitaxel (PTX). The anti-microbial activity of CPX released from BM-MSCs cells (BM-MSCsCPX-CM) or supernatant from cell lysate (BM-MSCsCPX-LYS) was evaluated by agar dilution and microdilution methods on three bacterial strains (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa). To investigate whether or not primed cells (BM-MSCsCPX) were able to directly act on the bacterial growth, co-colture was performed by mixing E. coli suspension to an increasing number of BM-MSCsCPX. The anti-bacterial activity was determined as number of BM-MSCsCPX that completely inhibited bacterial growth.ResultsThe results demonstrated that BM-MSCsCPX are able to uptake and then release CPX in the conditioned medium. The loaded antibiotic maintains its active form throughout the process as tested on bacteria.ConclusionsOur findings suggest that CPX-loaded MSCs may represent an important device for carrying and delivering CPX (and perhaps other antibiotics) into infected deep microenvironments; they could be used for local application and by systemic infusion when their homing capacity into the bone is cleared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号