首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
The electron transport system of respiring organisms reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan. Respiring bacteria deposit accumulated INT-formazan intracellularly as dark red spots. Corresponding to electron transport system activity, these deposits attain a size and a degree of optical density which allows them to be examined by light microscopy. If polycarbonate filters and epifluorescence microscopy are applied to analyze an INT-treated water sample, it is possible to differentiate between respiring and apparently nonrespiring bacteria. This differentiation, which permits determinations of the total number of bacteria and the proportion thereof involved in respiration, is realized directly within one and the same microscopic image. Initial applications of the present method for hydrobiological purposes showed that the proportion of respiring aquatic bacteria ranged between 6 to 12% (samples taken from coastal areas of the Baltic Sea) and 5 to 36% (samples taken from freshwater lakes and ponds). Cells of 1.6 to 2.4 micrometer (freshwater) and 0.4 micrometer (Baltic Sea) account for the highest proportion of respiring bacteria.  相似文献   

2.
The electron transport system of respiring organisms reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan. Respiring bacteria deposit accumulated INT-formazan intracellularly as dark red spots. Corresponding to electron transport system activity, these deposits attain a size and a degree of optical density which allows them to be examined by light microscopy. If polycarbonate filters and epifluorescence microscopy are applied to analyze an INT-treated water sample, it is possible to differentiate between respiring and apparently nonrespiring bacteria. This differentiation, which permits determinations of the total number of bacteria and the proportion thereof involved in respiration, is realized directly within one and the same microscopic image. Initial applications of the present method for hydrobiological purposes showed that the proportion of respiring aquatic bacteria ranged between 6 to 12% (samples taken from coastal areas of the Baltic Sea) and 5 to 36% (samples taken from freshwater lakes and ponds). Cells of 1.6 to 2.4 micrometer (freshwater) and 0.4 micrometer (Baltic Sea) account for the highest proportion of respiring bacteria.  相似文献   

3.
We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay.  相似文献   

4.
Total viable aerobic, heterotrophic bacteria, total coliforms, fecal coliforms, and fecal streptococci were enumerated in samples collected at five stations located in the Upper Chesapeake Bay, December 1973 through December 1974. Significant levels of pollution indicator organisms were detected at all of the stations sampled. Highest counts were observed in samples collected at the confluence of the Susquehanna River and the Chesapeake Bay. The indicator organisms examined were observed to be quantitatively distributed independently of temperature and salinity. Counts were not found to be correlated with concentration of suspended sediment. However, significant proportions of both the total viable bacteria (53%) and fecal indicator organisms (>80%) were directly associated with suspended sediments. Correlation coefficients (r) for the indicator organisms examined in this study ranged from r = 0.80 to r = 0.99 for bottom water and suspended sediment, respectively. Prolonged survival of fecal streptococci in most of the sediment samples was observed, with concomitant reduction of the correlation coefficient from r = 0.99, fecal streptococci to total coliforms in water, to r = 0.01, fecal streptococci to fecal coliforms in sediments. The results of this study compared favorably with fecal coliforms: fecal streptococci ratios for the various sample types. Characterization of organisms beyond the confirmed most-probable-number procedure provided good correlation between bacterial indicator groups.  相似文献   

5.
Samples were collected from organically polluted and unpolluted groundwater of sandy and gravelly deposits. After filtration onto polycarbonate filters (0.2m pore size) the number of respiring bacteria was recorded by microscopically counting cells containing red INT-formazan spots, which characterize respiring bacteria. The total number of bacteria was simultaneously recorded by epifluorescence microscopy after staining with acridine orange. The number of respiring bacteria in the groundwater samples (55–490×103/cm3) is within the range of values for other aquatic biotopes, but as the total number of bacteria in groundwater was usually higher, the proportion of respiring groundwater bacteria (0.66–7. 4%) was lower. Mainly larger bacteria, rods, and bacteria on particles could be identified as being active, whereas hardly any respiratory activity could be detected among small cocci and free interstitial bacteria. If the supply of dissolved organic matter (DOM) is adequate, the biomass of respiring bacteria correlates well with oxygen concentration, but there is no direct correlation between DOM concentration in groundwater and active bacterial biomass. Nor could any relationship be observed between the biomass of total and respiring bacteria, or between the quantity of respiring bacteria and heterotrophic bacterial activity.  相似文献   

6.
Summary The tetrazolium salt, 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) was used to determine viable respiring cells in batch cultures of Saccharomyces cerevisiae. Respiring cells reduce INT to water insoluble iodonitrotetrazolium formazan (INT-formazan) which is deposited within the respiring cell. The INT-formazan granules can be observed by brightfield microscopy. This allows a rapid quantitative determination of the percentage of respiring cells and total cells within the same microscopic field.In actively growing batch cultures of S. cerevisiae, the respiring cell count was equal to the total cell count for the first 72 h of the growth cycle. After 144 h of incubation only 22.7% of the total cell numbers were actively respiring.  相似文献   

7.
The electron transport system of respiring organisms reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan. Active bacterial cells may be recognized under the microscope by epifluorescence and by the simultaneous presence, seen under bright light field of optically dense intracellular deposits of INT-formazan. An improved procedure that leads to a sharp definition of cells and formazan deposits is presented here. Cells are concentrated on cellulose membrane filters of 0.1 μm porosity which are rendered further transparent prior to immersion of the cells in a layer of 4′, 6-diaminidino-2-phenylindole (DAPI) s′ fluorochrome. This process leads to two significant improvements: (1) the fluorochrome is not trapped inside the membrane, which decreases the background fluorescence and leads to a better detection of the small cells; (2) the cells are immersed in an aqueous solution, which prevents rapid dissolution of the formazan crystals which would be expected if they were in contact with oily clearing agents. Tests on formazan labelling and on storage of INT-processed samples suggest other precautions for reliable use. Improved in this way, the method is simple, rapid and has numerous applications in environmental studies, ecophysiology and ecotoxicology. Some examples are given, with 2 to 98% of INT reducing cells observed, depending on different environmental conditions.  相似文献   

8.
We report a method which combines epifluorescence microscopy and microautoradiography to determine both the total number of microorganisms in natural water populations and those individual organisms active in the uptake of specific substrates. After incubation with 3H-labeled substrate, the sample is filtered and, while still on the filter, mounted directly in a film of autoradiographic emulsion on a microscope slide. The microautoradiogram is processed and stained with acridine orange, and, subsequently, the filter is removed before microscopic observation. This novel preparation resulted in increased accuracy in direct counts made from the autoradiogram, improved sensitivity in the recognition of uptake-active (3H-labeled) organisms, and enumeration of a significantly greater number of labeled organisms compared with corresponding samples prepared by a previously reported method.  相似文献   

9.
Isolation and Diversity of Actinomycetes in the Chesapeake Bay   总被引:15,自引:3,他引:12       下载免费PDF全文
Chesapeake Bay was investigated as a source of actinomycetes to screen for production of novel bioactive compounds. The presence of relatively large populations of actinoplanetes (chemotype II/D actinomycetes) in Chesapeake Bay sediment samples indicates that it is an eminently suitable ecosystem from which to isolate actinomycetes for screening programs. Actinomycetes were isolated from sediment samples collected in Chesapeake Bay with an isolation medium containing nalidixic acid, which proved to be more effective than heat pretreatment of samples. Actinomycete counts ranged from a high of 1.4 × 105 to a low of 1.8 × 102 CFU/ml of sediment. Actinomycetes constituted 0.15 to 8.63% of the culturable microbial community. The majority of isolates from the eight stations studied were actinoplanetes (i.e., chemotype II/D), and 249 of these isolates were obtained in a total of 298 actinomycete isolates. Antimicrobial activity profiles indicated that diverse populations of actinoplanetes were present at each station. DNA hybridization studies showed considerable diversity among isolates between stations, but indicated that actinoplanete strains making up populations at nearby stations were more similar to each other than to populations sampled at distant stations. The diversity of actinoplanetes and the ease with which these organisms were isolated from Chesapeake Bay sediments make this a useful source of these actinomycetes.  相似文献   

10.
Deficiencies in traditional bacterial enumeration techniques which rely on colony formation have led to the use of total direct counting methods, such as the acridine orange direct count technique for the enumeration of planktonic bacteria. As total direct counts provide no information on the viability or activity of the organisms, demonstration of respiratory activity with the fluorochrome cyanoditolyl tetrazolium chloride (CTC) has been employed. We have modified this technique by performing filtration prior to CTC incubation. Cells captured on a polycarbonate membrane were incubated on absorbent pads saturated with medium containing CTC. Following counterstaining with DAPI (4(prm1),6-diamidino-2-phenylindole) total and respiring cells were enumerated by epifluorescence microscopy. Factors affecting CTC reduction by Klebsiella pneumoniae, Salmonella typhimurium, and Escherichia coli K-12 were investigated. With K. pneumoniae, nutrient additions to the CTC medium did not increase the number of respiring cells detected. CTC reduction by all three organisms decreased in response to an increase of the pH of the CTC medium above pH 6.5. Increasing phosphate concentrations contributed to this inhibitory effect. CTC-membrane filter counts of K. pneumoniae, S. typhimurium, and E. coli K-12 and of bacteria in well water corresponded closely with plate counts (r = 0.987). The results show that careful attention should be given to the composition of CTC-containing media which are used to enumerate respiring bacteria. With an appropriate medium, reliable enumeration of respiring bacteria can be achieved within a few hours.  相似文献   

11.
Distribution of Vibrio vulnificus in the Chesapeake Bay.   总被引:10,自引:1,他引:9       下载免费PDF全文
Vibrio vulnificus is a potentially lethal human pathogen capable of producing septicemia in susceptible persons. Disease is almost always associated with consumption of seafood, particularly raw oysters, or with exposure of wounds to seawater. An oligonucleotide DNA probe (V. vulnificus alkaline phosphatase-labeled DNA probe [VVAP]), previously shown to be highly specific for V. vulnificus, was used to enumerate this species in environmental samples collected from the Chesapeake Bay between April 1991 and December 1992. Total aerobic, heterotrophic, culturable bacteria were enumerated by plate counts on nonselective medium. The number of V. vulnificus organisms was determined by colony lifts of spread plates for subsequent hybridization with VVAP. V. vulnificus was not detected in any samples collected during February and March (water temperature of < 8 degrees C) but was found in 80% of the water samples collected during May, July, September, and December (water temperature of > 8 degrees C), with concentrations ranging from 3.0 x 10(1) to 2.1 x 10(2)/ml (ca. 8% of the total culturable heterotrophic bacteria). In a multiple regression analysis, increased V. vulnificus concentrations were correlated with lower salinities and with isolation from samples collected closer to the bottom. Isolation from oysters was demonstrable when water temperatures were 7.6 degrees C, with concentrations ranging from 1.0 x 10(3) to 4.7 x 10(4)/g (ca. 12% of total culturable bacteria). In samples collected in May and July, V. vulnificus was identified in seven of seven plankton samples and four of nine sediment samples. Our data demonstrate that V. vulnificus is a widespread and important component of the bacterial population of the Chesapeake Bay, with counts that are comparable to those reported from the Gulf of Mexico.  相似文献   

12.
The aim of this study was to initiate autecological studies on uncultivated natural populations of diazotrophic bacteria by examining the distribution of specific diazotrophs in the Chesapeake Bay. By use of quantitative PCR, the abundance of two nifH sequences (907h22 and 912h4) was quantified in water samples collected along a transect from the head to the mouth of the Chesapeake Bay during cruises in April and October 2001 and 2002. Standard curves for the quantitative PCR assays demonstrated that the relationship between gene copies and cycle threshold was linear and highly reproducible from 1 to 107 gene copies. The maximum number of 907h22 gene copies detected was approximately 140 ml−1 and the maximum number of 912h4 gene copies detected was approximately 340 ml−1. Sequence 912h4 was most abundant at the mouth of the Chesapeake Bay, and in general, its abundance increased with increasing salinity, with the highest abundances observed in April 2002. Overall, the 907h22 phylotype was most abundant at the mid-bay station. Additionally, 907h22 was most abundant in the April samples from the mid-bay and mouth of the Chesapeake Bay. Despite the fact that the Chesapeake Bay is rarely nitrogen limited, our results show that individual nitrogen-fixing bacteria have distinct nonrandom spatial and seasonal distributions in the Chesapeake Bay and are either distributed by specific physical processes or adapted to different environmental niches.  相似文献   

13.
Metagenomic Characterization of Chesapeake Bay Virioplankton   总被引:7,自引:1,他引:6       下载免费PDF全文
Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomic library was constructed from Chesapeake Bay virioplankton. The resulting sequences constitute the largest collection of long-read double-stranded DNA (dsDNA) viral metagenome data reported to date. BLAST homology comparisons showed that Chesapeake Bay virioplankton contained a high proportion of unknown (homologous only to environmental sequences) and novel (no significant homolog) sequences. This analysis suggests that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere. The taxonomic origin of BLAST homologs to viral library sequences agreed well with reported abundances of cooccurring bacterial subphyla within the estuary and indicated that cyanophages were abundant. However, the low proportion of Siphophage homologs contradicts a previous assertion that this family comprises most bacteriophage diversity. Identification and analyses of cyanobacterial homologs of the psbA gene illustrated the value of metagenomic studies of virioplankton. The phylogeny of inferred PsbA protein sequences suggested that Chesapeake Bay cyanophage strains are endemic in that environment. The ratio of psbA homologous sequences to total cyanophage sequences in the metagenome indicated that the psbA gene may be nearly universal in Chesapeake Bay cyanophage genomes. Furthermore, the low frequency of psbD homologs in the library supports the prediction that Chesapeake Bay cyanophage populations are dominated by Podoviridae.  相似文献   

14.
Sediments often exhibit low rates of nitrogen fixation, despite the presence of elevated concentrations of inorganic nitrogen. The organisms that potentially fix nitrogen in sediments have not previously been identified. Amplification of nifH genes with degenerate primers was used to assess the diversity of diazotrophs in two distinct sediment systems, anoxic muds of Chesapeake Bay and shallow surficial sediments of the Neuse River. Phylogenetic analysis revealed that sequences obtained from mid-Chesapeake Bay, which receive high organic loading and are highly reducing, clustered closely with each other and with known anaerobic microorganisms, suggesting a low abundance of aerobic or facultative diazotrophs in these sediments. Sulfate reduction dominates in the surface, but methanogenesis becomes more important with depth. A thin (<1 cm) oxidized layer is present only in the spring. No archaeal nifH sequences were obtained from Chesapeake Bay. Sequences of nifH amplified from surficial sediments of the Neuse River were distant from Chesapeake Bay sequences and included nif phylotypes related to sequences previously reported from marine mats and the Spartina rhizosphere. Differences in environmental site characteristics appear to select for different types of sediment diazotrophs, which is reflected in the phylogenetic composition of amplified nifH sequences.  相似文献   

15.
Predictability of Vibrio cholerae in Chesapeake Bay   总被引:1,自引:0,他引:1       下载免费PDF全文
Vibrio cholerae is autochthonous to natural waters and can pose a health risk when it is consumed via untreated water or contaminated shellfish. The correlation between the occurrence of V. cholerae in Chesapeake Bay and environmental factors was investigated over a 3-year period. Water and plankton samples were collected monthly from five shore sampling sites in northern Chesapeake Bay (January 1998 to February 2000) and from research cruise stations on a north-south transect (summers of 1999 and 2000). Enrichment was used to detect culturable V. cholerae, and 21.1% (n = 427) of the samples were positive. As determined by serology tests, the isolates, did not belong to serogroup O1 or O139 associated with cholera epidemics. A direct fluorescent-antibody assay was used to detect V. cholerae O1, and 23.8% (n = 412) of the samples were positive. V. cholerae was more frequently detected during the warmer months and in northern Chesapeake Bay, where the salinity is lower. Statistical models successfully predicted the presence of V. cholerae as a function of water temperature and salinity. Temperatures above 19°C and salinities between 2 and 14 ppt yielded at least a fourfold increase in the number of detectable V. cholerae. The results suggest that salinity variation in Chesapeake Bay or other parameters associated with Susquehanna River inflow contribute to the variability in the occurrence of V. cholerae and that salinity is a useful indicator. Under scenarios of global climate change, increased climate variability, accompanied by higher stream flow rates and warmer temperatures, could favor conditions that increase the occurrence of V. cholerae in Chesapeake Bay.  相似文献   

16.
Distribution of viruses in the Chesapeake Bay.   总被引:13,自引:0,他引:13  
High virus counts were found in water samples collected from the Chesapeake Bay. Viruses were enumerated by ultracentrifugation of water samples onto grids which were visualized by transmission electron microscopy. Virus counts in September 1990, April 1991, June 1991, August 1991, and October 1991 ranged between 2.6 x 10(6) and 1.4 x 10(8) viruses ml-1 with a mean of 2.5 x 10(7) viruses ml-1. Virus counts were usually at least three times higher than direct bacterial counts in corresponding samples. Virus counts in August and October were significantly higher than at the other sampling times, whereas bacterial counts were significantly lower at that time, yielding mean virus-to-bacterium ratios of 12.6 and 25.6, respectively. From analysis of morphology of the virus particles, it is concluded that a large proportion of the viruses are bacteriophages. The high virus counts obtained in this study suggest that viruses may be an important factor affecting bacterial populations in the Chesapeake Bay, with implications for gene transfer in natural aquatic bacterial populations and release of genetically engineered microorganisms to estuarine and coastal environments.  相似文献   

17.
Distribution of viruses in the Chesapeake Bay.   总被引:16,自引:6,他引:10       下载免费PDF全文
High virus counts were found in water samples collected from the Chesapeake Bay. Viruses were enumerated by ultracentrifugation of water samples onto grids which were visualized by transmission electron microscopy. Virus counts in September 1990, April 1991, June 1991, August 1991, and October 1991 ranged between 2.6 x 10(6) and 1.4 x 10(8) viruses ml-1 with a mean of 2.5 x 10(7) viruses ml-1. Virus counts were usually at least three times higher than direct bacterial counts in corresponding samples. Virus counts in August and October were significantly higher than at the other sampling times, whereas bacterial counts were significantly lower at that time, yielding mean virus-to-bacterium ratios of 12.6 and 25.6, respectively. From analysis of morphology of the virus particles, it is concluded that a large proportion of the viruses are bacteriophages. The high virus counts obtained in this study suggest that viruses may be an important factor affecting bacterial populations in the Chesapeake Bay, with implications for gene transfer in natural aquatic bacterial populations and release of genetically engineered microorganisms to estuarine and coastal environments.  相似文献   

18.
The seasonal incidence and occurrence of indicator organisms and pathogens were studied at four sites in the Rhode River, a subestuary of Chesapeake Bay. The highest frequency of occurrence of total and fecal coliforms and fecal streptococci was in Muddy Creek, a marsh area receiving pasture land runoff. Second highest frequency of occurrence of these bacteria was in Cadle Creek, a populated area. Lowest measurements of these parameters were obtained at stations in the central portion of the Rhode River. No Salmonella spp. were detected by the methods employed in this study. However, it is concluded that if these organisms are present, the concentrations are ≤1 organism per liter. The presence of Clostridium botulinum was detected in 12% of the samples tested.  相似文献   

19.
The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3–0.4°C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.  相似文献   

20.
Investigations of the distribution and diversity of nitrogen-fixing microorganisms in natural environments have often relied on PCR amplification and sequence analysis of a portion of one of the key enzymes in nitrogen fixation, dinitrogenase reductase, encoded by nifH. Recent work has suggested that DNA macroarrays provide semiquantitative fingerprints of diversity within mixtures of nifH amplicons (G. F. Steward, B. D. Jenkins, B. B. Ward, and J. P. Zehr, Appl. Environ. Microbiol. 70:1455-1465, 2004). Here we report the application of macroarrays for a study in the Chesapeake Bay. Samples from different locations in the bay yielded distinct fingerprints. Analysis of replicates and samples from different locations by cluster analysis showed that replicates clustered together, whereas different samples formed distinct clusters. There was a correspondence between the hybridization pattern observed and that predicted from the distribution of sequence types in a corresponding clone library. Some discrepancies between the methods were observed which are likely a result of the high nifH sequence diversity in the Chesapeake Bay and the limited number of sequences represented on this version of the array. Analyses of sequences in the clone library indicate that the Chesapeake Bay harbors unique, phylogenetically diverse diazotrophs. The macroarray hybridization patterns suggest that there are spatially variable communities of diazotrophs, which have been confirmed by quantitative PCR methods (S. M. Short, B. D. Jenkins, and J. P. Zehr, Appl. Environ. Microbiol., in press). The results show that DNA macroarrays have great potential for mapping the spatial and temporal variability of functional gene diversity in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号