首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
Vitamin C has inconsistent effects on malignant tumor cells, which vary from growth stimulation to apoptosis induction. It is well known that melanoma cells are more susceptible to vitamin C than any other tumor cells, but the precise mechanism remains to be elucidated. In the present study, the proliferation of B16F10 melanoma cells was suppressed by vitamin C, which induced growth arrest in a dose-dependent manner without cytotoxic effects. Therefore, we investigated the changes in cell cycle distribution of B16F10 melanoma cells by staining DNAs with propidium iodide (PI). The growth inhibition of B16F10 melanoma by vitamin C was associated with an arrest of cell cycle distribution at G1 stage. In addition, the levels of p53-p21Waf1/Cip1 increased during G1 arrest, which were essential for vitamin C-induced cell cycle arrest. The increased p21Waf1/Cip1 inhibited CDK2. Moreover, the activity of p53-p21Waf1/Cip1 pathway was closely related with the activation of checkpoint kinase 2 (Chk2). Inhibitor of the PI3K-family, LY294002 and the ATM/ATR inhibitor, caffeine, blocked vitamin C-induced growth arrest in B16F10 melanoma cells. These results suggest that vitamin C might be a potent agent to inhibit proliferative activity of melanoma cells via the regulation of Chk2-p53-p21Waf1/Cip1 pathway.  相似文献   

2.
Secreted protein acidic and rich in cysteine (SPARC), or osteonectin, belongs to the family of matricellular proteins that modulate cell-matrix interactions and cellular functions. SPARC is highly expressed in melanoma, and we reported that SPARC promotes epithelial/mesenchymal-like changes and cell migration. Here, we used siRNA and conditional shRNA to investigate the contribution of tumor-derived SPARC to melanoma cell growth in vitro and in vivo. We found that depletion of SPARC induces G2/M cell cycle arrest and tumor growth inhibition with activation of p53 and induction of p21(Cip1/Waf1) acting as a checkpoint, preventing efficient mitotic progression. In addition, we demonstrate that reduced mesenchymal features and the invasive potential of SPARC-silenced cells are independent of p21(Cip1/Waf1) induction and cell cycle arrest. Importantly, overexpression of SPARC reduces p53 protein levels and leads to an increase in cell number during exponential growth. Our findings indicate that in addition to its well-known function as a mediator of melanoma cell migration and tumor-host interactions, SPARC regulates, in a cell-autonomous manner, cell cycle progression and proliferation through the p53/p21(Cip1/Waf1) pathway.  相似文献   

3.
Arsenic exposure is associated with an increased risk of atherosclerosis and vascular diseases. Although endothelial cells have long been considered to be the primary targets of arsenic toxicity, the underlying molecular mechanism remains largely unknown. In this study, we sought to explore the signaling pathway triggered by sodium arsenite and its implication for endothelial phenotype. We found that sodium arsenite produced time- and dose-dependent decreases in human umbilical vein endothelial cell viability. This effect correlated with the induction of p21Cip1/Waf1 (up to 10-fold), a regulatory protein of cell cycle and apoptosis. We also found that arsenite-stimulated EGF (ErbB1) and ErbB2 receptor transactivation, manifest as receptor tyrosine phosphorylation, appeared to be a proximal signaling event leading to p21Cip1/Waf1 induction, because both pharmacological inhibitors and knockdown of receptors by RNA interference blocked arsenite-induced p21Cip1/Waf1 upregulation. Arsenite-induced activation of JNK and p38 MAPK was distinct, with only JNK as a downstream target of the EGF receptor. Moreover, inhibition of JNK with SP-600125 or dominant negative MKK7 inhibited only p21Cip1/Waf1 induction, whereas the p38 MAPK inhibitor SB-203580 or dominant negative MKK4 inhibited both p21Cip1/Waf1 and p53 induction. Functionally, inhibition of p21Cip1/Waf1 induction prevented endothelial apoptosis due to arsenite treatment. Insofar as endothelial dysfunction promotes vascular disease, these data provide a mechanism for the increased incidence of cardiovascular disease due to arsenite exposure.  相似文献   

4.
5.
c-Jun N-terminal kinase (JNK) plays a critical role in coordinating the cellular response to stress and has been implicated in regulating cell growth and transformation. To investigate the growth-regulatory functions of JNK1 and JNK2, we used specific antisense oligonucleotides (AS) to inhibit their expression. A survey of several human tumor cell lines revealed that JNKAS treatment markedly inhibited the growth of cells with mutant p53 status but not that of cells with normal p53 function. To further examine the influence of p53 on cell sensitivity to JNKAS treatment, we compared the responsiveness of RKO, MCF-7, and HCT116 cells with normal p53 function to that of RKO E6, MCF-7 E6, and HCT116 p53(-/-), which were rendered p53 deficient by different methods. Inhibition of JNK2 (and to a lesser extent JNK1) expression dramatically reduced the growth of p53-deficient cells but not that of their normal counterparts. JNK2AS-induced growth inhibition was correlated with significant apoptosis. JNK2AS treatment induced the expression of the cyclin-dependent kinase inhibitor p21(Cip1/Waf1) in parental MCF-7, RKO, and HCT116 cells but not in the p53-deficient derivatives. That p21(Cip1/Waf1) expression contributes to the survival of JNK2AS-treated cells was supported by additional experiments demonstrating that p21(Cip1/Waf1) deficiency in HCT116 cells also results in heightened sensitivity to JNKAS treatment. Our results indicate that perturbation of JNK2 expression adversely affects the growth of otherwise nonstressed cells. p53 and its downstream effector p21(Cip1/Waf1) are important in counteracting these detrimental effects and promoting cell survival.  相似文献   

6.
The sphingoplipid ceramide is responsible for a diverse range of biochemical and cellular responses including a putative role in modulating cell cycle progression. Herein, we describe that an accumulation of ceramide, achieved through the exogenous application of C(6)-ceramide or exposure to sphingomyelinase, induces a G(2) arrest in Rhabdomyosarcoma (RMS) cell lines. Utilizing the RMS cell line RD, we show that this G(2) arrest required the rapid induction of p21(Cip1/Waf1) independent of DNA damage. This was followed at later time points (48 h) by the commitment to apoptosis. Apoptosis was prevented by Bcl-2 overexpression, but permitted the maintenance of elevated p21(Cip1/Waf1) protein expression and the stabilization of the G(2) arrest response. Inhibition of p21(Cip1/Waf1) protein synthesis with cyclohexamide (CHX) or silencing of p21(Cip1/Waf1) with siRNA, prevented ceramide-mediated G(2) arrest and the late induction of apoptosis. Further, adopting the recent discovery that murine double minute 2 (MDM2) controls p21(Cip1/Waf1) expression by presenting this CDK inhibitor to the proteasome for degradation, RD cells overexpressing MDM2 abrogated ceramide-mediated p21(Cip1/Waf1) induction, G(2) arrest and the late ensuing apoptosis. Collectively, these data further support the notion that ceramide accumulation can modulate cell cycle progression. Additionally, these observations highlight MDM2 expression and proteasomal activity as key determinants of the cellular response to ceramide accumulation.  相似文献   

7.
The expression of inducible nitric-oxide synthase in melanoma tumor cells was recently shown to correlate strongly with poor patient survival after combination biochemotherapy (p<0.001). Furthermore, evidence suggests that nitric oxide, a reaction product of nitric oxide synthase, exhibits antiapoptotic activity in melanoma cells. We therefore hypothesized that nitric oxide antagonizes chemotherapy-induced apoptosis. Whether nitric oxide is capable of regulating cell growth and apoptotic responses to cisplatin treatment in melanoma cell lines was evaluated. We demonstrate herein that depletion of endogenously produced nitric oxide can inhibit melanoma proliferation and promote apoptosis. Moreover, our data indicate that the depletion of nitric oxide leads to changes in cell cycle regulation and enhances cisplatin-induced apoptosis in melanoma cells. Strikingly, we observed that the depletion of nitric oxide inhibits cisplatin-induced wild type p53 accumulation and p21(Waf1/Cip1/Sdi1) expression in melanoma cells. When cisplatin-induced p53 binding to the p21(Waf1/Cip1/Sdi1) promoter was examined, it was found that nitric oxide depletion significantly reduced the presence of p53-DNA complexes after cisplatin treatment. Furthermore, dominant negative inhibition of p53 activity enhanced cisplatin-induced apoptosis. Together, these data strongly suggest that endogenously produced nitric oxide is required for cisplatin-induced p53 activation and p21(Waf1/Cip1/Sdi1) expression, which can regulate melanoma sensitivity to cisplatin.  相似文献   

8.
UV radiation-induced mutation of the p53 gene is suggested as a causative event in skin cancer, including melanoma. We have analyzed here p53 mutations in melanoma cell lines and studied its stabilization, DNA-binding activity, and target gene activation by UVC. p53 was mutated in three of seven melanoma cell lines. However, high levels of p53 were detected in all cell lines, including melanoma cells with wild-type p53, with the exception of one line with a truncated form. Upon UV induction, p53 accumulated in lines with wild-type p53, and p53 target genes p21Cip1/Waf1, GADD45, and mdm2 were induced, but the induction of p21Cip1/Waf1 was significantly delayed as compared with the increase in p53 DNA-binding activity. However, despite p53 target gene induction, p53 DNA-binding activity was absent in one melanoma line with wild-type p53, and p53 target genes were induced also in cells with mutant p53. In response to UV, DNA replication ceased in all cell lines, and apoptosis ensued in four lines independently of p53 but correlated with high induction of GADD45. The results suggest that in melanoma, several p53 regulatory steps are dislodged; its basal expression is high, its activation in response to UV damage is diminished, and the regulation of its target genes p21Cip1/Waf1 and GADD45 are dissociated from p53 regulation.  相似文献   

9.
10.
To investigate whether the mitochondrial apoptotic pathway mediates myocardial cell injuries in rats under brain death (BD), and observe the effects and mechanisms of the c‐Jun N‐terminal kinase (JNK) inhibitor SP600125 on cell death in the heart. Forty healthy male Sprague‐Dawley (SD) rats were randomized into four groups: sham group (dural external catheter with no BD); BD group (maintain the induced BD state for 6 hrs); BD + SP600125 group (intraperitoneal injection of SP600125 10 mg/kg 1 hr before inducing BD, and maintain BD for 6 hrs); and BD + Dimethyl Sulphoxide (DMSO) group (intraperitoneal injection of DMSO 1 hr before inducing BD, and maintain BD for 6 hrs). Real‐time quantitative PCR was used to evaluate mRNA levels of Cyt‐c and caspase‐3. Western blot analysis was performed to examine the levels of mitochondrial apoptosis‐related proteins p‐JNK, Bcl‐2, Bax, Cyt‐c and Caspase‐3. TUNEL assay was employed to evaluate myocardial apoptosis. Compared with the sham group, the BD group exhibited increased mitochondrial apoptosis‐related gene expression, accompanied by the elevation of p‐JNK expression and myocardial apoptosis. As the vehicle control, DMSO had no treatment effects. The BD + SP600125 group had decreased p‐JNK expression, and reduced mitochondrial apoptosis‐related gene expression. Furthermore, the apoptosis rate of myocardial cells was reduced. The JNK inhibitor SP600125 could protect myocardial cells under BD through the inhibition of mitochondrial apoptosis‐related pathways.  相似文献   

11.
Prostaglandin A2 (PGA2) suppresses tumor growth in vivo, is potently antiproliferative in vitro, and is a model drug for the study of the mammalian stress response. Our previous studies using breast carcinoma MCF-7 cells suggested that p21(Waf1/Cip1) induction enabled cells to survive PGA2 exposure. Indeed, the marked sensitivity of human colorectal carcinoma RKO cells to the cytotoxicity of PGA2 is known to be associated with a lack of a PGA2-mediated increase in p21(Waf1/Cip1) expression, inhibition of cyclin-dependent kinase activity, and growth arrest. To determine if cell death following exposure to PGA2 could be prevented by forcing the expression of p21(Waf1/Cip1) in RKO cells, we utilized an adenoviral vector-based expression system. We demonstrate that ectopic expression of p21(Waf1/Cip1) largely rescued RKO cells from PGA2-induced apoptotic cell death, directly implicating p21(Waf1/Cip1) as a determinant of the cellular outcome (survival versus death) following exposure to PGA2. To discern whether p21(Waf1/Cip1)-mediated protection operates through the implementation of cellular growth arrest, other growth-inhibitory treatments were studied for the ability to attenuate PGA2-induced cell death. Neither serum depletion nor suramin (a growth factor receptor antagonist) protected RKO cells against PGA2 cytotoxicity, and neither induced p21(Waf1/Cip1) expression. Mimosine, however, enhanced p21(Waf1/Cip1) expression, completely inhibited RKO cell proliferation, and exerted marked protection against a subsequent PGA2 challenge. Taken together, our results directly demonstrate a protective role for p21(Waf1/Cip1) during PGA2 cellular stress and provide strong evidence that the implementation of cellular growth arrest contributes to this protective influence.  相似文献   

12.
15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a potent anti-angiogenic factor and induces endothelial cell apoptosis, although the mechanism remains unclear. In this study, 15d-PGJ(2) was found to increase p53 levels of the human umbilical vein endothelial cells by stabilizing p53. Both 15d-PGJ(2)-induced apoptosis and the induction of p21(Waf1) and Bax can be abolished by p53 small interfering RNA but not by peroxisome proliferator-activated receptor gamma inhibitors. Moreover, 15d-PGJ(2) activated JNK and p38 MAPK while inducing p53 phosphorylation at sites responsible for p53 activity. JNK inhibitor (SP600125) or p38 MAPK inhibitor (SB203580) pretreatment attenuated 15d-PGJ(2)-mediated apoptosis and suppressed the p21(Waf1) and Bax expressions without affecting p53 protein accumulation. Pretreatment with SP600125 partially prevented the phosphorylation of p53 at serines 33 and 392 induced by 15d-PGJ(2). 15d-PGJ(2) was also found to induce reactive oxygen species generation and partially blocked nuclear factor-kappaB activity. Pretreatment with antioxidant N-acetylcysteine prevented the p53 accumulation, the phosphorylations of JNK and p38 MAPK, the inhibition of NF-kappaB activity, as well as the apoptosis induced by 15d-PGJ(2). Using a mouse model of corneal neovascularization, it was demonstrated in vivo that 15d-PGJ(2) induced reactive oxygen species generation, activated JNK and p38 MAPK, induced p53 accumulation/phosphorylation, and induced vascular endothelial cell apoptosis, which could be abolished by N-acetylcysteine, SP600125, SB203580, or a virus-derived amphipathic peptides-based p53 small interfering RNA. This is the first study that 15d-PGJ(2) induces vascular endothelial cell apoptosis through the signaling of JNK and p38 MAPK-mediated p53 activation both in vitro and in vivo, further establishing the potential of 15d-PGJ(2) as an anti-angiogenesis agent.  相似文献   

13.
The c-Jun NH(2)-terminal kinase (JNK) subgroup of mitogen-activated protein kinases has been implicated largely in stress responses, but an increasing body of evidence has suggested that JNK also plays a role in cell proliferation and survival. We examined the effect of JNK inhibition, using either SP600125 or specific antisense oligonucleotides, on cell proliferation and cell cycle progression. SP600125 was selective for JNK in vitro and in vivo versus other kinases tested including ERK, p38, cyclin-dependent protein kinase 1 (CDK1), and CDK2. SP600125 inhibited JNK activity and KB-3 cell proliferation with the same dose dependence, suggesting that inhibition of proliferation was a direct consequence of JNK inhibition. Inhibition of proliferation by SP600125 was associated with an increase in the G(2)-M and apoptotic fractions of cells but was not associated with p53 or p21 induction. Antisense oligonucleotides to JNK2 but not JNK1 caused highly significant inhibition of cell proliferation. Wild-type mouse fibroblasts responded similarly with proliferation inhibition and apoptosis induction, whereas c-jun(-/-) fibroblasts were refractory to the effects of SP600125, suggesting that JNK signaling to c-Jun is required for cell proliferation. Studies in synchronized KB-3 cells indicated that SP600125 delayed transit time through S and G(2)-M phases. Correspondingly, JNK activity increased in late S phase and peaked in late G(2) phase. During synchronous mitotic progression, cyclin B levels increased concomitant with phosphorylation of c-Jun, H1 histone, and Bcl-2. In the presence of SP600125, mitotic progression was prolonged, and c-Jun phosphorylation was inhibited, but neither H1 nor Bcl-2 phosphorylation was inhibited. However, the CDK inhibitor roscovitine inhibited mitotic Bcl-2 phosphorylation. These results indicate that JNK, and more specifically the JNK2 isoform, plays a key role in cell proliferation and cell cycle progression. In addition, conclusive evidence is presented that a kinase other than JNK, most likely CDK1 or a CDK1-regulated kinase, is responsible for mitotic Bcl-2 phosphorylation.  相似文献   

14.
The cyclin-dependent kinase inhibitors interact with cyclin-cdk complexes to arrest mitogen-stimulated transit through the cell cycle, but these proteins have recently been shown to have positive regulatory effects on cyclin-cdk complex activity as well. Most of the previous work in this area has focussed on the finding that overexpressed p21(Waf1/Cip1) causes growth arrest. However, mice lacking p21(Waf1/Cip1) showed normal development with no aberrancy in their cell cycles, and antisense p21(Waf1/Cip1) has only been shown to prevent cell cycle arrest, leading to the conclusion that the cyclin kinase inhibitors may not be required for cell cycle progression. We found that transfection of several lines of vascular smooth muscle cells with antisense oligodeoxynucleotide specific to p21(Waf1/Cip1) correlates with decreased cyclin D1/cdk 4, but not cyclin E/cdk 2, association, yet, unexpectedly, results in dose-dependent inhibition of platelet-derived growth factor-BB-stimulated DNA synthesis and cell proliferation. Our finding that p21(Waf1/Cip1) exhibits permissive effects on growth factor-induced vascular smooth muscle cell cycle progression, such that its presence is required for growth factor-induced proliferation, is the first such report and opens up a fertile area of research relevant to diseases involving vascular cell proliferation.  相似文献   

15.
Chen X  Zhang W  Gao YF  Su XQ  Zhai ZH 《Cell research》2002,12(3-4):229-233
P21(Waf1/Cip1) is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21(Waf1/Cip1) involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence for a link between p21(Waf1/Cip1) and cellular senescence. While in murine cells, the role of p21(Waf1/Cip1) is indefinite. We explored this issue using NIH3T3 cells with inducible p21(Waf1/Cip1) expression. Induction of p21(Waf1/Cip1) triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features, such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed that p21(Waf1/Cip1)-transduced NIH3T3 cells expressed beta-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Our results suggest that p2l(Waf1/Cip1) can also induce senescence-like changes in murine cells.  相似文献   

16.
Symmetric aromatic diselenides are potential anticancer agents with strong cytotoxic activity. In this study, the in vitro anticancer activities of a novel series of diarylseleno derivatives from the diphenyldiselenide (DPDS) scaffold were evaluated. Most of the compounds exhibited high efficacy for inducing cytotoxicity against different human cancer cell lines. DPDS 2 , the compound with the lowest mean GI50 value, induced both caspase‐dependent apoptosis and arrest at the G0/G1 phase in acute lymphoblastic leucemia CCRF‐CEM cells. Consistent with this, PARP cleavage; enhanced caspase‐2, ‐3, ‐8 and ‐9 activity; reduced CDK4 expression and increased levels of p53 were detected in these cells upon DPDS 2 treatment. Mutated p53 expressed in CCRF‐CEM cells retains its transactivating activity. Therefore, increased levels of p21CIP1 and BAX proteins were also detected. On the other hand, DPDS 6 , the compound with the highest selectivity index for cancer cells, resulted in G2/M cell cycle arrest and caspase‐independent cell death in p53 deficient HTB‐54 lung cancer cells. Autophagy inhibitors 3‐methyladenine, wortmannin and chloroquine inhibited DPDS 6 ‐induced cell death. Consistent with autophagy, increased LC3‐II and decreased SQSTM1/p62 levels were detected in HTB‐54 cells in response to DPDS 6 . Induction of JNK phosphorylation and a reduction in phospho‐p38 MAPK were also detected. Moreover, the JNK inhibitor SP600125‐protected HTB‐54 cells from DPDS 6 ‐induced cell death indicating that JNK activation is involved in DPDS 6 ‐induced autophagy. These results highlight the anticancer effects of these derivatives and warrant future studies examining their clinical potential.  相似文献   

17.
目的探讨JNK信号通路对蜂胶抑制K562细胞增殖过程的调控作用。方法体外培养K562细胞,用不同浓度蜂胶、c—Jun氨基末端激酶(c—JanN—terminalkinase,JNK)特异性抑制剂SP600125对白血病K562细胞进行处理,用MTT法检测细胞增殖抑制率,流式细胞术(FCM)检测细胞凋亡率,Western印迹检测JNK下游分子c—Jun以及磷酸化c—Jan(p-c-Jun)的变化。结果蜂胶作用K562细胞后,增殖抑制率、凋亡率显著升高,具有时间和剂量依赖性,并伴随p-c-Jun蛋白水平上调;加入SP600125能下调p-c-Jun的水平,显著提高蜂胶对K562细胞的增殖抑制率和凋亡率。结论JNK信号通路参与了蜂胶抑制K562细胞增殖过程的调控。抑制JNK活性可增强蜂胶对K562细胞的增殖抑制、凋亡诱导作用。  相似文献   

18.
While analyzing the role of c‐Jun NH2‐terminal kinase (JNK) in neurogenesis in P19 embryonal carcinoma cells, we noticed that treatment with SP600125, a JNK inhibitor, increased the cell size markedly. SP600125‐induced enlargement of P19 cells was time‐ and dose‐dependent. The increased cell size in response to SP600125 was also detected in B6mt‐1 embryonic stem cells. SP600125 treatment inhibited cell growth and increased DNA contents, indicating the inhibition of cell proliferation resulting from endoreduplication. Concurrently, the gene expression of p21, a regulator of G2/M arrest as well as G1 arrest, was increased in cells treated with SP600125. The increased cell size in response to SP600125 was detected even in P19 cells treated with colcemide, an inhibitor of cell cycle progression at the metaphase. The present study suggests that treatment with SP600125 progresses the cell cycle, skipping cytokinesis in P19 cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of the pan c-Jun N-terminal kinase (JNK) inhibitor SP600125 on the proliferation of human lung carcinoma A549 cells has been evaluated. We have shown that SP600125 completely inhibited the proliferation of A549 cells, the cycle arrest being in G2/M phase. When cells were treated with SP600125 for >12h, a cell population with DNA content of 4n to 8n was detected. Moreover, the effect of SP600125 on the expression of cell cycle related proteins was an upregulation of p53 protein accompanied by an increase in its molecular mass. Prolonged SP600125 treatment downregulated p21, Bax and Mdm2 expression, but increased the level of the cellular p53-Mdm2 complex. Taken together, we show that SP600125 could induce G2/M cell cycle arrest and endoreduplication in a p21 independent manner, and that SP600125 could also post-translationally modify p53 to modify its function. Our data show that basic JNK activity plays an important role in the progression of the cell cycle at G2/M cell phase.  相似文献   

20.
Cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays the key part in cell cycle arrest at the G1/S checkpoint in response to DNA damage, and is involved in the assembly of active cyclin–kinase complexes, in particular, cyclin D–Cdk4/6. Recent studies extended the range of known p21Waf1/Cip1 functions. In addition to the cell-cycle control, p21Waf1/Cip1 participates in important cell processes such as differentiation, senescence, and apoptosis. The balance of p21Waf1/Cip1 functional activity appears to shift depending on the cell state (senescence, exposure to stress, expression of viral oncogenes). This is due to direct or indirect interaction with various modulators or to modification (phosphorylation, partial proteolysis) of p21Waf1/Cip1. The review considers the structure of p21Waf1/Cip1, its posttranslational modification, interactions with various cell or viral proteins, and their effects on the p21Waf1/Cip1 function and on the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号