首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays the key part in cell cycle arrest at the G1/S checkpoint in response to DNA damage, and is involved in the assembly of active cyclin–kinase complexes, in particular, cyclin D–Cdk4/6. Recent studies extended the range of known p21Waf1/Cip1 functions. In addition to the cell-cycle control, p21Waf1/Cip1 participates in important cell processes such as differentiation, senescence, and apoptosis. The balance of p21Waf1/Cip1 functional activity appears to shift depending on the cell state (senescence, exposure to stress, expression of viral oncogenes). This is due to direct or indirect interaction with various modulators or to modification (phosphorylation, partial proteolysis) of p21Waf1/Cip1. The review considers the structure of p21Waf1/Cip1, its posttranslational modification, interactions with various cell or viral proteins, and their effects on the p21Waf1/Cip1 function and on the cell.  相似文献   

2.
It has been reported that genomic DNA methylation decreases gradually during cell culture and an organism's aging. However, less is known about the methylation changes of age-related specific genes in aging. p21(Waf1/Cip1) and p16(INK4a) are cyclin-dependent kinase (Cdk) inhibitors that are critical for the replicative senescence of normal cells. In this study, we show that p21(Waf1/Cip1) and p16(INK4a) have different methylation patterns during the aging process of normal human 2BS and WI-38 fibroblasts. p21(Waf1/Cip1) promoter is gradually methylated up into middle-aged fibroblasts but not with senescent fibroblasts, whereas p16(INK4a) is always unmethylated in the aging process. Correspondently, the protein levels of DNA methyltransferase 1 (DNMT1) and DNMT3a increase from young to middle-aged fibroblasts but decrease in the senescent fibroblasts, while DNMT3b decreases stably from young to senescent fibroblasts. p21(Waf1/Cip1) promoter methylation directly represses its expression and blocks the radiation-induced DNA damage-signaling pathway by p53 in middle-aged fibroblasts. More importantly, demethylation by 5-aza-CdR or DNMT1 RNA interference (RNAi) resulted in an increased p21(Waf1/Cip1) level and premature senescence of middle-aged fibroblasts demonstrated by cell growth arrest and high beta-Galactosidase expression. Our results suggest that p21(Waf1/Cip1) but not p16(INK4a) is involved in the DNA methylation mediated aging process. p21(Waf1/Cip1) promoter methylation may be a critical biological barrier to postpone the aging process.  相似文献   

3.
Since anti-apoptotic effect of ERK has not been elucidated clearly in DNA-damage-induced cell death, the role of ERK was examined in normal HEF cells treated with mild DNA damage using etoposide or camptothecin. ERK was activated by DNA damage in HEF cells. PD98059 increased apoptosis and reduced DNA-damage-induced p21Waf1/Cip1/Sdi level. Depletion of p21Waf1/Cip1/Sdi induced cell death and PD98059 induced additional cell death. DNA-damage-induced increase in cytoplasmic localization and phosphorylation of threonine residues of p21Waf1/Cip1/Sdi was reversed by PD98059. Thus, the results suggest that ERK pathway mediates anti-apoptotic effects through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to mild DNA damage.  相似文献   

4.
p57(Kip2) and p21(Cip1/Waf1) are members of cyclin-dependent kinase (Cdk) inhibitors which play critical roles in the terminal differentiation of skeletal muscle and lung. We investigated mRNA levels of p57(Kip2) and p21(Cip1/Waf1) in skeletal muscle and lung of mice during maturation and aging using Northern hybridization. The mRNA levels of p57(Kip2) and p21(Cip1/Waf1) decreased in skeletal muscle and lung of mice during maturation and aging except that the level of p21(Cip1/Waf1) mRNA in skeletal muscle of mice showed an increase only during maturation. The decrease of the p57(Kip2) mRNA level involved neither a change of DNA methylation at the promoter region nor an alteration of the imprinting status in aged mice. The decreases of p57(Kip2) and p21(Cip1/Waf1) mRNA levels during aging suggest that the process of tissue-specific terminal differentiation may be gradually downregulated with senescence in tissues where p57(Kip2) and p21(Cip1/Waf1) play key roles in differentiation. The downregulation of p57(Kip2) and p21(Cip1/Waf1) during aging is contrary to the upregulation of Cdk inhibitors during cellular replicative senescence, indicating that aging in an organismal level is mediated by mechanisms different from replicative senescence of cultured cells.  相似文献   

5.
Chen X  Zhang W  Gao YF  Su XQ  Zhai ZH 《Cell research》2002,12(3-4):229-233
P21(Waf1/Cip1) is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21(Waf1/Cip1) involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence for a link between p21(Waf1/Cip1) and cellular senescence. While in murine cells, the role of p21(Waf1/Cip1) is indefinite. We explored this issue using NIH3T3 cells with inducible p21(Waf1/Cip1) expression. Induction of p21(Waf1/Cip1) triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features, such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed that p21(Waf1/Cip1)-transduced NIH3T3 cells expressed beta-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Our results suggest that p2l(Waf1/Cip1) can also induce senescence-like changes in murine cells.  相似文献   

6.
The sphingoplipid ceramide is responsible for a diverse range of biochemical and cellular responses including a putative role in modulating cell cycle progression. Herein, we describe that an accumulation of ceramide, achieved through the exogenous application of C(6)-ceramide or exposure to sphingomyelinase, induces a G(2) arrest in Rhabdomyosarcoma (RMS) cell lines. Utilizing the RMS cell line RD, we show that this G(2) arrest required the rapid induction of p21(Cip1/Waf1) independent of DNA damage. This was followed at later time points (48 h) by the commitment to apoptosis. Apoptosis was prevented by Bcl-2 overexpression, but permitted the maintenance of elevated p21(Cip1/Waf1) protein expression and the stabilization of the G(2) arrest response. Inhibition of p21(Cip1/Waf1) protein synthesis with cyclohexamide (CHX) or silencing of p21(Cip1/Waf1) with siRNA, prevented ceramide-mediated G(2) arrest and the late induction of apoptosis. Further, adopting the recent discovery that murine double minute 2 (MDM2) controls p21(Cip1/Waf1) expression by presenting this CDK inhibitor to the proteasome for degradation, RD cells overexpressing MDM2 abrogated ceramide-mediated p21(Cip1/Waf1) induction, G(2) arrest and the late ensuing apoptosis. Collectively, these data further support the notion that ceramide accumulation can modulate cell cycle progression. Additionally, these observations highlight MDM2 expression and proteasomal activity as key determinants of the cellular response to ceramide accumulation.  相似文献   

7.
8.
Cyclin-dependent kinase inhibitor p2(Waf1/Cip1/Sdi1/CAP20) plays the key part in cell cycle arrest at the G1/S checkpoint in response to DNA damage, and is involved in the assembly of active cyclin-kinase complexes, in particular, cyclin D-Cdk4/6. Recent studies extended the range of known p21Waf1 functions. In addition to the cell-cycle control, p21Waf1 participates in important cell processes such as differentiation, senescence, and apoptosis. A balance of p21Waf1 functional activity seems to shift depending on the cell state (senescence, exposure to stress, expression of viral oncogenes). This is due to direct or indirect interaction with various modulators or to modification (phosphorylation, partial proteolysis) of p21Waf1. The review considers the structure of p21Waf1, its posttranslational modification, interactions with various cell or viral proteins, and their effects on the p21Waf1 function and the cell.  相似文献   

9.
The protein kinase Akt is activated by growth factors and promotes cell survival and cell cycle progression. Here, we demonstrate that Akt phosphorylates the cell cycle inhibitory protein p21(Cip1) at Thr 145 in vitro and in intact cells as shown by in vitro kinase assays, site-directed mutagenesis, and phospho-peptide analysis. Akt-dependent phosphorylation of p21(Cip1) at Thr 145 prevents the complex formation of p21(Cip1) with PCNA, which inhibits DNA replication. In addition, phosphorylation of p21(Cip1) at Thr 145 decreases the binding of the cyclin-dependent kinases Cdk2 and Cdk4 to p21(Cip1) and attenuates the Cdk2 inhibitory activity of p21(Cip1). Immunohistochemistry and biochemical fractionation reveal that the decrease of PCNA binding and regulation of Cdk activity by p21(Cip1) phosphorylation is not caused by altered intracellular localization of p21(Cip1). As a functional consequence, phospho-mimetic mutagenesis of Thr 145 reverses the cell cycle-inhibitory properties of p21(Cip1), whereas the nonphosphorylatable p21(Cip1) T145A construct arrests cells in G(0) phase. These data suggest that the modulation of p21(Cip1) cell cycle functions by Akt-mediated phosphorylation regulates endothelial cell proliferation in response to stimuli that activate Akt.  相似文献   

10.
11.
Expression of an estrogen receptor alpha (ER) transgene in hormone independent breast cancer and normal breast epithelial cells arrests cell cycling when estradiol is added. Although endogenously expressed ER does not typically affect estradiol-induced cell cycling of hormone dependent breast cancer cells, we observed that elevated expression of a green fluorescent protein fused to ER (GFP-ER) hindered entry of estrogen treated MCF-7 cells into S phase of the cell cycle. In analyses of key cell-cycle regulating proteins, we observed that GFP-ER expression had no affect on the protein levels of cyclin D1, cyclin E, or p27, a cyclin dependent kinase (Cdk) inhibitor. However, at 24 h, p21 (Waf1, Cip1; a Cdk2 inhibitor) protein remained elevated in the high GFP-ER expressing cells but not in non-GFP-ER expressing cells. Elevated expression of p21 inhibited Cdk2 activity, preventing cells from entering S phase. The results show that elevated levels of ER prevented the down-regulation of p21 protein expression, which is required for hormone responsive cells to enter S phase.  相似文献   

12.
13.
We investigated the role of some key regulators of cell cycle in the activation of caspases during apoptosis of insulin-secreting cells after sustained depletion of GTP by a specific inosine 5'-monophosphate dehydrogenase inhibitor, mycophenolic acid (MPA). p21(Waf1/Cip1) was significantly increased following MPA treatment, an event closely correlated with the time course of caspase activation under the same conditions. MPA-induced p21(Waf1/Cip1) was not mediated by p53, since p53 mass was gradually reduced over time of MPA treatment. The increment of p21(Waf1/Cip1) by MPA was further enhanced in the presence of a pan-caspase inhibitor, indicating that the increased p21(Waf1/Cip1) may occur prior to caspase activation. This notion of association of p21(Waf1/Cip1) accumulation with caspase activation and apoptosis was substantiated by using mimosine, a selective p21(Waf1/Cip1) inducer independent of p53. Mimosine, like MPA, also increased p21(Waf1/Cip1), promoted apoptosis and simultaneously increased the activity of caspases. Furthermore, knocking down of p21(Waf1/Cip1) transfection of siRNA duplex inhibited caspase activation and apoptosis due to GTP depletion. In contrast to p21(Waf1/Cip1), a reduction in p27(Kip1) occurred in MPA-treated cells. These results indicate that p21(Waf1/Cip1) may act as an upstream signal to block mitogenesis and activate caspases which in turn contribute to induction of apoptosis.  相似文献   

14.
15.
16.
Ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR)kinases, family members of the PI-3 kinase related proteins, play a key role in checkpointactivation and maintenance of genomic stability following DNA damage. We have usedwild type (WT) and p38?-deficient mouse embryonic stem (ES) cells to investigate therole of ATR and ATM kinases during embryonic cell cycle. We have found thatinhibition of ATR and ATM kinases with caffeine or Chk1 with UCN-01, results inactivation of a p38-dependent intra-S-phase checkpoint and activation of apoptosis in EScells. However, wortmannin at a concentration, that inhibits ATM kinase but not ATRkinase, did not affect cell cycle progression. Furthermore, the presence of caffeine resultsin activation of p38 kinase, accumulation of p21/Waf1 in a complex with Cdk2 anddecrease of Cdk2 kinase activity. In contrast, caffeine-treated p38?-/- ES cells show lessapoptosis, and fail to trigger an effective S-phase checkpoint and accumulation ofp21/Waf1. We conclude that ATR kinase activity is essential for normal cell cycleprogression of exponentially proliferating mouse ES cells even in the absence ofexogenous DNA damage, and ATR deregulation triggers p38?-dependent cell-cyclecheckpoint and apoptotic responses.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号