首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have studied the effects of feeding an amino-acid-based diet (ABD) at different frequencies upon growth and several NADPH-production systems in the rainbow trout (Oncorhynchus mykiss). The kinetic behavior of glucose 6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), malic enzyme (ME) and NADP-linked isocitrate dehydrogenase (NADP-IDH) was followed in the liver, kidney and adipose tissue.The kinetic parameters of NADP-IDH alone remained unaltered by either ABD or changes in feeding frequency. Maximum-velocity and catalytic-efficiency values of hepatic G6PDH and ME increased significantly when fed four times a day compared to twice a day with both the control diet and ABD, although these parameters for ME were significantly lower with ABD than with the control diet at both frequencies. In the kidney the activity and catalytic efficiency of G6PDH and 6PGDH increased significantly with high-frequency feeding on ABD. The activities of these enzymes in adipose tissue were much lower than in hepatic tissue. In the liver, maximum velocity and the catalytic efficiency of G6PDH, 6PGDH and ME increased significantly with the control diet at high-frequency feeding whereas they decreased significantly with ABD, especially with high-frequency feeding. Neither the Michaelis constant nor the activity ratios varied.Both feeding frequency and free amino acid altered the activity of the most important cytosolic NADPH-production systems. The varying response to nutritional stimuli of NADP-linked enzymes in fish tissues shows that they have independent physiological and metabolic roles and that their regulatory mechanisms respond to changes in nutritional and metabolic factors.  相似文献   

2.
Summary Previous studies examining the regulation of the synthesis of G6PDH and 6PGDH in rat liver and adipose tissue have focused on the induction of these enzymes by different diets and some hormones. In rat liver these enzymatic activities seem to be regulated by a mechanism involving changes in the NADPH requirements. In this paper we have studied the effect of changes in the flux through different NADPH-consuming pathways on G6PDH and 6PGDH levels in adipose tissue and on the NADPH/NADP ratio. The results show that: I) an increase in the consumption of NADPH, caused by the activation of either fatty acid synthesis or detoxification systems which consume NADPH, is paralleled by an increase in the levels of these enzymes; II) when the increase in consumption of NADPH is prevented, the G6PDH and 6PGDH levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - GR Glutathione Reductase - ME Malic Enzyme - tBHP t-Butyl Hydroperoxide - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide  相似文献   

3.
4.
葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶是植物戊糖磷酸途径中的两个关键酶。在克隆了水稻质体葡萄糖-6-磷酸脱氢酶基因OsG6PDH2和质体6-磷酸葡萄糖脱氢酶基因Os6PGDH2基础上,分析比较了水稻胞质和质体葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因的基因结构、表达特性和进化地位。结合双子叶模式植物拟南芥两种酶基因的分析结果,认为高等植物葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因在进化方式上截然不同,葡萄糖-6-磷酸脱氢酶的胞质基因与动物和真菌等真核生物具有共同的祖先;6-磷酸葡萄糖酸脱氢酶的胞质酶和质体酶基因都起源于原核生物的内共生。讨论了植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因可能的进化模式,为高等植物及质体的进化起源提供了新的资料。  相似文献   

5.
Summary Histochemical analysis for NADP-dependent dehydrogenases, succinate dehydrogenase, NADH and NADPH-tetrazoleum reductases and esterase was conducted on primary cultures of adipose tissue stromal-vascular cells. Enzyme activities were restricted to clusters of lipid laden cells (adipocytes). The number of enzyme reactive adipocytes increased with length of culture. Coverslips were partially coated with collagen to allow comparisons of cell differentiation on coated (C-glass) and uncoated glass (U-glass) surface. There were no reactions for NADH- and NADPH-tetrazoleum reductases (TR) in cells on C-glass whereas adipocytes and stromal cells on U-glass were reactive. Glucose-6-phosphate (G6PDH) and 6-phosphogluconate (6PGDH) dehydrogenase activities were markedly demonstrated in both stromal cells and adipocytes on U-glass. Malate (MDH) and isocitrate (ICDH) dehydrogenase activites were higher in adipocytes than in stromal cells on the U-glass. Stromal cells on C-glass were either devoid of these enzymes (G6PDH, MDH, 6PGDH, ICDH) or activity was restricted to a small area of the cytoplasm. There were two levels of staining intensity in (MDH, ICDH, G6PDH, 6PGDH) adipocyte clusters on C-glass.Elimination of phenazine methosulphate from the NADP-dependent dehydrogeanse medias and SDH media, caused a reduction in enzyme reactive adipocytes on the C-glass. This manipulation did not reduce the number of enzyme reactive cells on U-glass. Cells on C-glass and U-glass were distinctly different in esterase stained coverslips. These studies demonstrated enzyme histochemical reactions of adipocytes and stromal cells in primary culture that were dependent on the type of extracellular matrix. Furthermore, enzyme histochemistry was shown to be useful for delineating adipocytes from stromal cells in primary cultures.  相似文献   

6.
Commercially obtained fruits of Corylus avellana exhibit the characteristic loss of dormancy of this seed following chilling under moist conditions. The activities of cytosolic and organellar enzymes of pentose phosphate pathway in cotyledonary tissue were assayed throughout stratification and over a similar period in damp vermiculite at 20° C. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconic acid dehydrogenase (6PGDH) were both found in cytosolic extracts in all treatments; only 6PGDH was present in the organellar fraction.The enzyme activities monitored in seeds at 20° C remained relatively constant over the course of the investigation except in the case of cytosolic 6PGDH where it is suggested an inhibitor of the enzyme accumulated. This inhibitor was removed by the partial purification procedure. Increases in the activities of the enzymes occurred during stratification, the major increase coinciding exactly with dormancy breakage but prior to the initiation of germination. The marked increase in G6PDH and 6PGDH concurrent with the change in germination potential of the chilled seed may have considerable biochemical significance in breaking down the dormant state.Abbreviations G6P glucose-6-phosphate - G6PDH glucose-6 phosphate dehydrogenase - NADP nicotinamide adenine dinucleotide phosphate - 6 PGDH 6-phosphogluconic acid dehydrogenase - PPP pentose phosphate pathway  相似文献   

7.
葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶是植物戊糖磷酸途径中的两个酶.在克隆了水稻质体葡萄糖-6-磷酸脱氢酶基因OsG6PDH2和质体6-磷酸葡萄糖脱氢酶基因Os6PGDH2基础上,分析比较了水稻胞质和质体葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因的基因结构、表达特性和进化地位.结合双子叶模式植物拟南芥两种酶基因的分析结果,认为高等植物葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因在进化方式上截然不同,葡萄糖-6-磷酸脱氢酶的胞质基因与动物和真菌等真核生物具有共同的祖先;6-磷酸葡萄糖酸脱氢酶的胞质酶和质体酶基因都起源于原核生物的内共生.讨论了植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因可能的进化模式,为高等植物及质体的进化起源提供了新的资料.  相似文献   

8.
Summary The activities of glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), malic enzyme (ME) and isocitrate dehydrogenase (ICDH) were investigated with optimized histochemical methods (Rieder et al. 1978), and the activity of 3-hydroxybutyrate dehydrogenase (3HBDH) and neutral fat content with conventional techniques in the liver of male rats under the following experimental dietary conditions: (A) Fasting for 0, 12 and 84 h; (B) 84-h fasting followed by refeeding with a low-fat, high-carbohydrate diet for 6 h and for 2, 3, 5, 7, 11 and 14 nights; (C) refeeding with standard diet for 5 nights; (D) low-fat, high-carbohydrate diet for 7 and 14 nights.The activities of G6PDH, 6PGDH and ME decreased slightly during fasting primarily in zone 1 and increased dramatically on refeeding with a low-fat, high-carbohydrate diet. This activity increase was confined mainly to zone 3 during the first 3 days and was accompanied by a deposition of neutral fats that began in zone 3 and progressed to zone 1. Neutral fat accumulation was maximal after 3 nights, with a uniform accumulation of large droplets in all the hepatocytes; this was followed by a release that started in zone 3 and proceeded in a periportal direction. On the other hand, G6PDH, 6PGDH and ME attained their maximum activities after 5 and 7 nights of the low-fat diet, the activities being nearly homogeneously distributed over the liver acinus in a few cases. Subsequently the activities fell mainly in zone 1, causing the activity patterns and levels to approach those of the animals in group (D). In contrast to this, the activity of ICDH increased during fasting principally in zone 1, so that the otherwise steep activity gradient in favor of zone 3 lessened. Refeeding led at first to a fall of activity below the initial value, but later the normal distribution pattern was restored. The activity of 3HBDH showed a behavior similar to that of ICDH. The findings are discussed with reference to the functional heterogeneity of the liver perenchyma, and the existence of a liponeogenic area in zone 3 is proposed.Essential parts of this study have been presented to the Medical Faculty of the University of Freiburg/Br. as an inaugural dissertationSupported by grants from the Deutsche Forschungsgemeinschaft (Sa 127/7) and SFB 46  相似文献   

9.
10.
The key enzymes of lipid biosynthesis in oleaginous filamentous fungi exist as metabolons. However, the existence of a similar organization in other groups of oleaginous microorganisms is still unknown. In this study, we confirmed the occurrence of two separate and distinct lipogenic metabolons in a thraustochytrid, Aurantiochytrium SW1. These involve the Type I Fatty Acid Synthase (FAS) pathway, consisting of six enzymes: fatty acid synthase, malic enzyme (ME), ATP: citrate lyase (ACL), acetyl-CoA carboxylase (ACC), malate dehydrogenase (MD) and pyruvate carboxylase (PC), and the Polyketide Synthase-like (PKS) pathway, consisting of PKS subunits a, b, c, glucose-6-phosphate dehydrogenase (G6PDH) 6-phosphogluconate dehydrogenase (6PGDH), ACL and ACC. This suggests that the NADPH requirement for the FAS pathway is primarily generated and channelled by ME whereas G6PDH and 6PGDH fulfil this role for the PKS pathway. Diminished biosynthesis of palmitic acid (16:0), docosahexaenoic acid (22:6 n-3, DHA) and docosapentaenoic acid (22:5 n-6, DPA) correlated with the dissociation of their respective metabolons thereby suggesting that regulation of the pathways is achieved through the formation and dissociation of the metabolons.  相似文献   

11.
Short-term effect of 3,5,3'-triiodothyronine (T3) and 3,5-diiodothyronine (T2) on lipid metabolism in the liver of Anabas testudineus was examined. In vivo injections of both T3 and T2 at a concentration of 10 ng/g body weight increased malic enzyme (ME), glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) activity compared to 6-propylthiouracil (6-PTU) treated group. Treatment of 6-PTU results in the accumulation 14C-acetate into fat and thyroid hormones' treatment reduce it. In vitro experiments show that malic enzyme activity is augmented only by high concentration of T3 (10(-7) M) where as all concentrations of T2 increase its activity. In vitro studies with T3 showed a biphasic effect on cholesterol content. Conversely T2 in vitro, reduced cholesterol content with all concentrations. From these results it can be concluded that both T3 and T2 have short-term effect on lipid metabolism in Anabas.  相似文献   

12.
The reaction velocity of glucose-6-phosphate dehydrogenase (G6PDH) and phosphogluconate dehydrogenase (PGDH) was quantified with a cytophotometer by continuous monitoring of the reaction product as it was formed in liver cryostat sections from normal, young mature female rats at 37 degrees C. Control incubations were performed in media lacking both substrate and coenzyme for G6PDH activity and lacking substrate for PGDH activity. All reaction rates were non-linear but test minus control reactions showed linearity with incubation time up to 5 min using Nitro BT as final electron acceptor. End point measurements after incubation for 5 min at 37 degrees C revealed that the highest specific activity of G6PDH was present in the intermediate area (Vmax = 7.79 +/- 1.76 mumol H2 cm-3 min-1) and of PGDH in the pericentral and intermediate areas (Vmax = 17.19 +/- 1.73 mumol H2 cm-3 min-1). In periportal and pericentral areas, Vmax values for G6PDH activity were 4.48 +/- 1.03 mumol H2 cm-3 min-1) and 3.47 +/- 0.78 mumol H2 cm-3 min-1), respectively. PGDH activity in periportal areas showed a Vmax of 10.84 +/- 0.33 mumol H2 cm3 min-1. Variation of the substrate concentration for G6PDH activity yielded similar KM values of 0.17 +/- 0.07 mM, 0.15 +/- 0.13 mM and 0.22 +/- 0.11 mM in periportal, pericentral and intermediate areas, respectively. KM values of 0.87 +/- 0.12 mM in periportal and of 1.36 +/- 0.10 mM in pericentral and intermediate areas were found for PGDH activity. The significant difference between KM values for PGDH in areas within the acinus support the hypothesis that PGDH is present in the cytoplasmic matrix and in the microsomes. A discrepancy existed between KM and Vmax values determined in cytochemical assays using cryostat sections and values calculated from biochemical assays using diluted homogenates. In cytochemical assays, the natural microenvironment for enzymes is kept for the demonstration of their activity and thus may give more accurate information on enzyme reactions as they take place in vivo.  相似文献   

13.
14.
Lipogenic enzyme activities of porcine intra- and intermuscular adipose tissues were determined in growing lean (Large White) and fat (Meishan) pigs. The activities of acetyl-CoA-carboxylase (ACX), malic enzyme (ME) and glucose-6-phosphate dehydrogenase (G6PDH) were compared in both breeds and at both adipose sites. All three enzyme activities were much lower in the intramuscular adipose tissue than in the intermuscular site. Although the lipogenic activity of the intramuscular adipose site was low, it appeared, however, to possess adequate levels of enzymes for in situ lipid synthesis. The highest differences in lipogenic enzyme activities between Meishan and Large White pigs were found in intramuscular adipose tissue, and essentially concerned the activity of malic enzyme which was much higher in Meishan pigs. A close relationship between ME activity and lipid content of intramuscular adipose tissue was observed in both breeds. It was concluded that ME appeared to be a major factor affecting the incidence of higher intramuscular fat in the pig.  相似文献   

15.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

16.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

17.
The effects of unilateral nephrectomy (UN) and streptozotocin (STZ) diabetes on the activities of enzymes involved in uridine and cytidine synthesis in early renal growth (3–14 days after stimulus to growth) have been compared. Measurements were also made of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) and of glucose 6-phosphate (G6P), UDP-glucose, and glycogen, in relation to phosphoribosyl pyrophosphate, ribonucleotide, and complex carbohydrate formation. There were striking differences in the activities of CTP synthetase, G6PDH, and 6PGDH in the two conditions, with a three-fold increase in all three enzymes at 3 and 5 days and a two-fold increase above basal values at 14 days of STZ diabetes. The UN group showed no significant change in CTP synthetase at any stage and the activity of G6PDH and 6PGDH only kept pace with renal growth. Changes in routes of uridine synthesis were less marked, with a more rapid rise in carbamoyl-phosphate synthetase (glutamine) and a lesser response of dihydroorotate dehydrogenase in the UN relative to the STZ-diabetic groups. The enzymes of complex II and of uracil phosphoribosyltransferase showed essentially similar patterns during renal hypertrophy in UN and STZ diabetes. The parallel increase in CTP synthetase, G6PDH, and 6PGDH in the kidney in diabetes, also known to increase in growth situations in hepatomas and in renal tumors, is discussed in relation to hormone signals involved in renal growth. The importance of the concentration of CTP, and thus of CTP synthetase, in the CTP-cytidyltransferase reaction, an enzyme with a high Km for CTP, makes the present observation of the striking increase in CTP synthetase in STZ diabetes of particular interest in relation to phosphatidylcholine formation and hormone signal transduction.  相似文献   

18.
In vivo pentose phosphate pathway (PPP) enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and transaldolase (TAL) activities as well as ATP- and ADP-level variations of Amycolatopsis orientalis were investigated with respect to glucose concentration and incubation period. G6PDH, 6PGDH, and TAL activities of A. orientalis reached maximum levels at 48 hr for all glucose concentrations used, after which the levels began to decline. G6PDH, 6PGDH, and TAL activities showed positive correlation with the glucose concentration up to 15 g/L, while further increases had an opposite effect. Intracellular ATP level showed a positive correlation with glucose concentrations, while ADP level increased up to 15 g/L. ATP concentration of A. orientalis increased rapidly at 48 hr of incubation, as was the case also for G6PDH, 6PGDH, and TAL activities, although the incubation period corresponding to maximum values of ADP shifted to 60 hr. Production of the glycopeptide antibiotic vancomycin increased with the increases in glucose concentrations up to 15 g/L, by showing coherence in the rates of oxidative and nonoxidative parts of the PPP.  相似文献   

19.
Correlation analysis demonstrated a statistically significant correlation of linear-weight characteristics of the steelhead rainbow trout (cultivated steelhead form) with an RNA/DNA ratio and the expression level of the gene encoding cytochrome c oxidase (CCO) in two-year-old individuals (1+) as well as the expression level of the gene encoding the myosin heavy chain (MyHC) and activities of the enzymes CCO and lactate dehydrogenase (LDH) in muscles and 1-glycerophosphate dehydrogenase (1-GPDH) and glucose-6-phosphate dehydrogenase (G6PDH) in the liver of two- and three-year-old individuals (1+ and 2+). With age, the correlation of 1-GPDH and G6PDH activities in the rainbow trout liver with the fish body weight increased, whereas their correlations with the body length reduced. The age- and sex-related distinctions in the MyHC gene expression and activities of the white muscle enzyme LDH and the liver enzymes 2-GPDH and G6PDH were detected in rainbow trout of both age cohorts.  相似文献   

20.
The changes in the activity of glucose-6-phosphate dehydrogenase (G6PDH) (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH) (EC 1.1.1.44) in leaf tissues and the subcellular localisation of their isozymes in protoplasts derived from healthy and potato virus Y (PVY) infected plants of Nicotiana tabacum L. cv. Samsun were determined. The activities of G6PDH and 6PGDH were markedly increased in virus-infected leaves during the acute phase of infection both in crude homogenate and partial purificate (when compared with the values found in healthy control plants) and correlated with the multiplication curve of PVY. Intact chloroplasts and soluble cytosolic proteins were obtained from whole plants upon the culmination of the multiplication curve of PVY and upon the enhancement of the activity of both dehydrogenases by means of differential centrifugation of broken protoplasts. The chloroplastic fraction from infected protoplasts (based on chlorophyll content or NADP+-triosephosphate dehydrogenase activity) showed an enhanced activity of G6PDH (1.81 times that of healthy protoplasts), and 6PGDH (1.77 times). Cytosol from infected protoplasts (based on phosphoenolpyruvate carboxylase activity) contained only slightly enhanced activities of G6PDH and 6PGDH (only 1.26 and 1.16 times, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号