首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Human polo-like kinase 1 (Plk1) is involved in cell proliferation and overexpressed in a broad variety of different cancer types. Due to its crucial role in cancerogenesis Plk1 is a potential target for diagnostic and therapeutic applications. Peptidic ligands can specifically interact with the polo-box domain (PBD) of Plk1, a C-terminal located phosphoepitope binding motif. Recently, phosphopeptide MQSpTPL has been identified as ligand with high binding affinity. However, a radiolabeled version of this peptide showed only insufficient cellular uptake. The present study investigated peptide dimers consisting of PBD-targeting phosphopeptide MQSpTPL and a cell-penetrating peptide (CPP) moiety. The new constructs demonstrate superior uptake in different cancer cell-lines compared to the phosphopeptide alone. Furthermore, we could demonstrate binding of phosphopeptide-CPP dimers to PBD of Plk1 making the compounds interesting leads for the development of molecular probes for imaging Plk1 in cancer.  相似文献   

2.
The polo-box domain (PBD) of polo-like kinase 1 (Plk1) is essentially required for the function of Plk1 in cell proliferation. The availability of the phosphopeptide-binding pocket on PBD provides a unique opportunity to develop novel protein–protein interaction inhibitors. Recent identification of a minimal 5-residue-long phosphopeptide, PLHSpT, as a Plk1 PBD-specific ligand has led to the development of several peptide-based inhibitors, but none of them is cyclic peptide. Through the combination of single-peptoid mimics and thio-ether bridged cyclization, we successfully demonstrated for the first time two cyclic peptomers, PL-116 and PL-120, dramatically improved the binding affinity without losing mono-specificity against Plk1 PBD in comparison with the linear parental peptide, PLHSpT. These cyclic peptomers could serve as promising templates for future drug designs to inhibit Plk1 PBD.  相似文献   

3.
Mammalian polo-like kinases (Plks) are characterized by the presence of an N-terminal protein kinase domain and a C-terminal polo-box domain (PBD) involved in substrate binding and regulation of kinase activity. Plk1-4 have traditionally been linked to cell cycle progression, genotoxic stress and, more recently, neuron biology. Recently, a fifth mammalian Plk family member, Plk5, has been characterized in murine and human cells. Plk5 is expressed mainly in differentiated tissues such as the cerebellum. Despite apparent loss of catalytic activity and a stop codon in the middle of the human gene, Plk5 proteins retain important functions in neuron biology. Notably, its expression is silenced by epigenetic alterations in brain tumors, such as glioblastomas, and its re-expression prevents cell proliferation of these tumor cells. In this review, we will focus on the non-cell cycle roles of Plks, the biology of the new member of the family and the possible kinase- and PBD-independent functions of polo-like kinases.Key words: cell cycle, kinase evolution, neuron differentiation, polo-box domain, polo-like kinases, tumor suppression  相似文献   

4.
At the onset of anaphase, a protease called separase breaks the link between sister chromatids by cleaving the cohesin subunit Scc1. This irreversible step in the cell cycle is promoted by degradation of the separase inhibitor, securin, and polo-like kinase (Plk) 1-dependent phosphorylation of the Scc1 subunit. Plk could recognize substrates through interaction between its phosphopeptide interaction domain, the polo-box domain, and a phosphorylated priming site in the substrate, which has been generated by a priming kinase beforehand. However, the physiological relevance of this targeting mechanism remains to be addressed for many of the Plk1 substrates. Here, we show that budding yeast Plk1, Cdc5, is pre-deposited onto cohesin engaged in cohesion on chromosome arms in G2/M phase cells. The Cdc5-cohesin association is mediated by direct interaction between the polo-box domain of Cdc5 and Scc1 phosphorylated at multiple sites in its middle region. Alanine substitutions of the possible priming phosphorylation sites (scc1-15A) impair Cdc5 association with chromosomal cohesin, but they make only a moderate impact on mitotic cell growth even in securin-deleted cells (pds1Δ), where Scc1 phosphorylation by Cdc5 is indispensable. The same scc1-15A pds1Δ double mutant, however, exhibits marked sensitivity to the DNA-damaging agent phleomycin, suggesting that the priming phosphorylation of Scc1 poses an additional layer of regulation that enables yeast cells to adapt to genotoxic environments.  相似文献   

5.
6.
Mammalian polo-like kinases (Plks) are characterized by the presence of an N-terminal protein kinase domain and a C-terminal polo-box domain (PBD) involved in substrate binding and regulation of kinase activity. Plk1-4 have traditionally been linked to cell cycle progression, genotoxic stress and, more recently, neuron biology. Recently, a fifth mammalian Plk family member, Plk5, has been characterized in murine and human cells. Plk5 is expressed mainly in differentiated tissues such as the cerebellum. Despite apparent loss of catalytic activity and a stop codon in the middle of the human gene, Plk5 proteins retain important functions in neuron biology. Notably, its expression is silenced by epigenetic alterations in brain tumors, such as glioblastomas, and its re-expression prevents cell proliferation of these tumor cells. In this review, we will focus on the non-cell cycle roles of Plks, the biology of the new member of the family and the possible kinase- and PBD-independent functions of polo-like kinases.  相似文献   

7.
Polo-like kinase 1 (PLK1) plays a critical role during multiple stages of cell cycle progression and is involved in the development and metastasis of malignant tumours. The protein contains a regulatory polo-box domain (PBD) that can recognise and bind to a wide variety of phosphorylated substrates. Here, a systematic amino acid preference profile of phosphopeptide interaction with PLK1 PBD domain was created based on the crystal structures of the domain in complex with its natural phosphopeptide ligands. With the profile we were able to explore the structural basis and energetic landscape of phosphopeptide binding to the domain. Moreover, in addition to domain peptide-binding pocket we also examined the intermolecular interaction between the N-terminal region of phosphopeptide and a newly discovered crystal packing site of the domain. All the harvested information was successfully integrated to guide the structural design and optimisation of phosphopeptide ligands with improved affinity and selectivity for the domain, which were then confirmed in vitro by fluorescence anisotropy assays. Structural analysis and energetic analysis revealed that the phosphopeptide ligand can be divided into three functionally independent sections: a N-terminal flexible tail, a C-terminal unbinding tail and a central binding region. The N-terminal tail possesses a high flexibility that can roll over on the surface of PBD crystal packing site, while the C-terminal tail points out of the peptide-binding pocket of the domain and no substantial interaction can be observed between them. In contrast, the central region binds tightly to the domain pocket and exhibits modest conformational change over different ligands.  相似文献   

8.
Bipolar mitotic spindle organization is fundamental to faithful chromosome segregation. Furry (Fry) is an evolutionarily conserved protein implicated in cell division and morphology. In human cells, Fry localizes to centrosomes and spindle microtubules in early mitosis, and depletion of Fry causes multipolar spindle formation. However, it remains unknown how Fry controls bipolar spindle organization. This study demonstrates that Fry binds to polo-like kinase 1 (Plk1) through the polo-box domain of Plk1 in a manner dependent on the cyclin-dependent kinase 1-mediated Fry phosphorylation at Thr-2516. Fry also binds to Aurora A and promotes Plk1 activity by binding to the polo-box domain of Plk1 and by facilitating Aurora A-mediated Plk1 phosphorylation at Thr-210. Depletion of Fry causes centrosome and centriole splitting in mitotic spindles and reduces the kinase activity of Plk1 in mitotic cells and the accumulation of Thr-210-phosphorylated Plk1 at the spindle poles. Our results suggest that Fry plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting Plk1 activity at the spindle poles in early mitosis.  相似文献   

9.
Polo-like kinase (Plk) plays a central role in centrosome cycle and is closely associated with the oncogenesis of lung cancer. The protein consists of a catalytic kinase domain (KD) and a regulatory polo-box domain (PBD); either direct inhibition of the KD’s catalytic activity or indirect disruption of the PBD–substrate interaction can be used to potentially suppress the pathological activation of lung cancer Plk. Here, we reported a successful molecular design and engineering of phosphopeptide ligands to target Plk PBD domain by integrating in silico modeling and in vitro assay. In the procedure, a helical peptide segment hps was derived from dimerization interface of the complex crystal structure of domain dimer using bioinformatics approach, which was then used as sequence template to generate potent phosphopeptide binders of Plk PBD domain in terms of a systematic residue mutation profile. Fluorescence anisotropy assays were conducted to substantiate the findings and conclusions obtaining from the molecular engineering. Consequently, three helical phosphopeptides, including the native hps and its two mutants hps-m 1 and hps-m 2, were successfully designed that can independently rebind to Plk PBD domain with a moderate or high affinity (K d = 127, 26, and 5 μM, respectively). These peptide ligands can be considered as potent self-competitors to disrupt PBD dimerization in lung cancer metastasis. Structural and energetic analysis revealed that hydrophobic forces and van der Waals contacts confer strong stability for domain–peptide complex system, while hydrogen bonds and electrostatic interactions contribute specificity and selectivity to the complex recognition.  相似文献   

10.
In an effort to develop improved binding antagonists of the polo-like kinase 1 (Plk1) polo-box domain (PBD), we optimized interactions of the known high affinity 5-mer peptide PLHSpT using oxime-based post solid-phase peptide diversification of the N-terminal Pro residue. This allowed us to achieve up to two orders of magnitude potency enhancement. An X-ray crystal structure of the highest affinity analogue in complex with Plk1 PBD revealed new binding interactions in a hydrophobic channel that had been occluded in X-ray structures of the unliganded protein. This study represents an important example where amino acid modification by post solid-phase oxime ligation can facilitate the development of protein-protein interaction inhibitors by identifying new binding pockets that would not otherwise be accessible to coded amino acid residues.  相似文献   

11.
Polo-box motif targets a centrosome regulator, RanGTPase   总被引:3,自引:0,他引:3  
Mammalian polo-like kinase (Plk) acts at various stages in early and late mitosis. Plk1 localizes in the centrosome, the central spindle, the midbody as well as the kinetochore. The non-catalytic region in the C-terminus of Plk1 has conserved sequence motifs, named polo-boxes. These motifs are important for Plk localization. GFP protein fused with the core sequences of polo-box (50 amino acids) localized Plk to target organelles. We screened for Plk interacting proteins by constructing a tandem repeat of the polo-box motif, and used it as bait in the two-hybrid system with HeLa cell cDNA library. RanGTPase was detected as a positive clone. Through in vitro and in vivo protein binding analysis in synchronized cells by thymidine block and by nocodazole treatment, we confirmed the interaction between endogenous Ran and Plk1. We showed that endogenous Ran and Plk1 proteins were co-localized to centrosomes, which is a major target organelle of endogenous Plk1, in early mitotic cells by immunofluorescence. Finally, we demonstrated that Plk1 phosphorylated RanBPM, a Ran-binding protein in microtubule organizing center, through the interaction with Ran. These data suggested that the core motif of polo-box is sufficient for Plk1-targeting, and that Plk1 may play roles in centrosome through recruitment and/or activation of Ran/RanBPM proteins.  相似文献   

12.
Mammalian polo-like kinase 1 (Plk1) acts at various stages in early and late mitosis. Plk1 localizes at the centrosome and maintains this position through mitosis. Thereafter Plk1 moves to the kinetochore and midbody region, important sites during chromosome separation and cytokinesis. The catalytic domain of Plk1 is in the Nterminus region, whereas the non-catalytic region in the Cterminus of Plk1 has a conserved motif, named the Polobox. This motif is critical for Plk localization. EGFP proteins fused with the N-terminus and C-terminus of Plk1 localize in the nucleus and centrosomes, respectively. The core sequences of the polo-box (50 amino acids) also localize in Plk1 target organelles. To screen for domainspecific target proteins of Plk1, we constructed an Nterminal domain and a tandem repeat polo-box motif, and used them as templates in a yeast two-hybrid screen. The HeLa cell cDNA library indicated several proteins including the centrosome/kinetochore components or regulators, to be characterized as positive clones. Through in vitro protein binding analyses, we confirmed an interaction between these proteins and Plk1. The data reported from this study indicate that the N- and Ctermini of Plk1 may function through recruitment and/or activation of domain-specific target proteins in dividing cells. Additionally, tandem repeats of the conserved core motif of the polo-box are sufficient for targeting and may be useful as a centrosome/kinetochore-specific targeting peptide.  相似文献   

13.
Polo-like kinase 1 is a serine/threonine kinase which plays an essential role in mitosis and malignant transformation. The aim of this study was to investigate the prognostic significance of polo-like kinase 1 expression and determine its possibility as a therapeutic target in non-small cell lung cancer. Semi-quantitative RT-PCR assay was performed to detect polo-like kinase 1 mRNA expression in non-small cell lung cancer cells or tissues. Immunohistochemistry was performed to detect polo-like kinase 1 protein expression in 100 non-small cell lung cancer tissue samples, and the associations of polo-like kinase 1 expression with clinicopathological factors or prognosis of non-small cell lung cancer patients were evaluated. RNA interference was employed to inhibit endogenous polo-like kinase 1 expression and analyzed the effects of polo-like kinase 1 inhibition on the malignant phenotypes of non-small cell lung cancer cells including growth, apoptosis, radio- or chemoresistance. Also, the possible molecular mechanisms were also investigated. The levels of polo-like kinase 1 mRNA expression in non-small cell lung cancer cell lines or tissues were significantly higher than those in normal human bronchial epithelial cell line or corresponding non-tumor tissues. High polo-like kinase 1 expression was significantly correlated with advanced clinical stage, higher tumor classification and lymph node metastasis of non-small cell lung cancer patients (P = 0.001, 0.004 and 0.001, respectively). Meanwhile, high polo-like kinase 1 protein expression was also an independent prognostic molecular marker for non-small cell lung cancer patients (hazard ratio: 2.113; 95% confidence interval: 1.326-3.557; P = 0.017). Polo-like kinase 1 inhibition could significantly inhibit in vitro and in vivo proliferation, induce cell arrest of G2/M phase and apoptosis enhancement in non-small cell lung cancer cells, which might be activation of the p53 pathway and the Cdc25C/cdc2/cyclin B1 feedback loop. Further, inhibition of polo-like kinase 1 could enhance the sensitivity of non-small cell lung cancer cells to taxanes or irradiation. Thus, polo-like kinase 1 might be a prognostic marker and a chemo- or radiotherapeutic target for non-small cell lung cancer.  相似文献   

14.
The polo-like kinase family plays a vital role in many cell cycle related events. The family includes mammalian Plk1, Snk (Plk2), and Fnk/Prk (Plk3), Xenopus laevis Plx1, Drosophila polo, fission yeast Plo1, and budding yeast Cdc5. These enzymes, in addition to a conserved kinase domain at the N-terminus, have highly conserved sequences called polo-box(s) in the non-catalytic C-terminal domain.1 Genetic and biochemical experiments with several different organisms have documented that polo-like kinases are involved in many aspects of the cell cycle, such as activation of Cdc2, centrosome assembly and maturation, activation of the anaphase-promoting complex (APC) during the metaphase-anaphase transition, and cytokinesis.(1-3)  相似文献   

15.
Johnson TM  Antrobus R  Johnson LN 《Biochemistry》2008,47(12):3688-3696
The mitotic protein kinase Plk1 catalyzes events associated with centrosome maturation, kinetocore function, spindle formation, and cytokinesis and is a target for anticancer drug design. It is composed of a N-terminal kinase domain and a C-terminal polo-box domain (PBD). The PBD domain serves to localize the kinase on cognate phosphorylated substrates, and this binding relieves the inhibition of the kinase by the PBD. Similar to many protein kinases, Plk1 is activated by phosphorylation on a threonine residue, Thr210, in the activation segment. In this work, we describe expression in Escherichia coli cells and purification of full-length Plk1 in quantities suitable for structural studies and use this material for quantitative characterization of the activation events with the substrate translationally controlled tumour protein (TCTP). The presence of the PBD-binding phosphopeptide enhances phosphorylation by the activating Ste20-like kinase (Slk). Native Plk1 exhibits a basal catalytic efficiency k cat/ K(M) of 9.9 x 10 (-5) s (-1) microM (-1). Association with a polo-box-binding phosphopeptide increased the catalytic efficiency by 11x largely through an increase in k(cat) with no change in K(M). Phosphorylation by Slk increases catalytic efficiency by 202x with a 2.3-fold reduction in K(M) and 88-fold increase in k(cat). Phosphorylation and the presence of the PBD-binding phosphopeptide result in an increase in catalytic efficiency of 1515x with a 2.3-fold decrease in K(M) and a 705-fold increase in k(cat) over the unmodified Plk1. Knowledge of kinase regulatory mechanisms and the structures of the Plk1 individual domains has allowed for a model to be proposed for these activatory events.  相似文献   

16.
Members of polo-like kinases (collectively, Plks) have been identified in various eukaryotic organisms and play pivotal roles in cell proliferation. They are characterized by the presence of a distinct region of homology in the C-terminal noncatalytic domain, called polo-box domain (PBD). Among them, Plk1 and its functional homologs in other organisms have been best characterized because of its strong association with tumorigenesis. Plk1 is overexpressed in a wide spectrum of cancers in humans, and is thought to be an attractive anti-cancer drug target. Plk1 offers, within one molecule, two functionally different drug targets with distinct properties-the N-terminal catalytic domain and the C-terminal PBD essential for targeting the catalytic activity of Plk1 to specific subcellular locations. In this review, we focused on discussing the recent development of small-molecule and phosphopeptide inhibitors for their potency and specificity against Plk1. Our effort in understanding the binding mode of various inhibitors to Plk1 PBD are also presented.  相似文献   

17.
18.
The polo-like kinase family plays a vital role in many cell cycle related events. The family includes mammalian Plkl, Snk (Plk2), and Fnk/Prk (Plk3), Xenopus laevis Plxl,Drosophila polo, fission yeast Plol, and budding yeast Cdc5. These enzymes, in addition to a conserved kinase domain at the N-terminus, have highly conserved sequences called polo-box(s) in the non-catalytic C-terminal domain. Genetic and biochemical experiments with several different organisms have documented that polo-like kinases are involved in many aspects of the cell cycle, such as activation of Cdc2, centrosome assembly and maturation, activation of the anaphase-promoting complex (APC) during the metaphase-anaphase transition, and cytokinesis.  相似文献   

19.
Protein–protein interactions (PPIs) mediated by the polo-box domain (PBD) of polo-like kinase 1 (Plk1) serve important roles in cell proliferation. Critical elements in the high affinity recognition of peptides and proteins by PBD are derived from pThr/pSer-residues in the binding ligands. However, there has been little examination of pThr/pSer mimetics within a PBD context. Our current paper compares the abilities of a variety of amino acid residues and derivatives to serve as pThr/pSer replacements by exploring the role of methyl functionality at the pThr β-position and by replacing the phosphoryl group by phosphonic acid, sulfonic acid and carboxylic acids. This work sheds new light on structure activity relationships for PBD recognition of phosphoamino acid mimetics.  相似文献   

20.
Addition of tumor-promoting phorbol diesters to [32P]phosphate-labeled A431 human epidermoid carcinoma cells caused an increase in the phosphorylation state of the transferrin receptor. The A431 cell transferrin receptor was also found to be a substrate for protein kinase C in vitro. Tryptic phosphopeptide mapping of the transferrin receptor resolved the same two phosphopeptides (X and Y) after either protein kinase C phosphorylation in vitro or treatment of labeled A431 cells with phorbol diesters. [32P]Phosphoserine was the only labeled phosphoamino acid detected. Phosphopeptide X was shown to be an incomplete tryptic digestion product which could be further digested with trypsin to generate the limit tryptic phosphopeptide (Y). Radiosequence analysis of [32P]phosphopeptide Y demonstrated that the [32P]phosphoserine was the second residue from amino terminus of the peptide. This receptor phosphopeptide was found to co-migrate with the synthetic peptide Phe-Ser(P)-Leu-Ala-Arg (where Ser(P) is phosphoserine) during reverse-phase high pressure liquid chromatography and two-dimensional thin layer electrophoresis and chromatography. The peptide Phe-Ser(P)-Leu-Ala-Arg is an expected tryptic fragment of the cytoplasmic domain of the transferrin receptor corresponding to residues 23-27. We conclude that the major site of protein kinase C phosphorylation of the transferrin receptor in vivo and in vitro is serine 24. This phosphorylation site is located within the intracellular domain of the transferrin receptor, 38 residues away from the predicted transmembrane domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号