首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis C virus (HCV) core protein plays an important role in the development of hepatic steatosis in patients with chronic HCV infection. Treatment of C57BL/6 mice infected with HCV core recombinant adenoviruses with resveratrol significantly decreased hepatic triacylglycerols (TAG) while the serum TAG level was unaffected. RT-PCR and Western blotting showed that HCV core protein attenuated the expression of Sirt1 and PPAR-α, which would be reversed by resveratrol. This was also confirmed in primary mouse hepatic cells infected with HCV core protein expressing adenovirus. Thus, resveratrol may prevent against hepatic steatosis by blocking the inhibited expression of Sirt1 and PPAR-α induced by HCV core protein.  相似文献   

2.
3.
4.
Alteration of hepatic lipid metabolism contributes to a range of human diseases including steatosis. Sterol response element binding protein (SREBP) is the master regulator of lipid metabolism. The epigenetic mechanism whereby SREBP activity is regulated remains incompletely understood. We have previously shown that systemic knockdown of brahma-related gene 1 (Brg1), a chromatin remodeling protein, attenuates steatosis in mice by down-regulating the synthesis of pro-inflammatory mediators. Here we show that hepatocyte conditional Brg1 knockout (HepcKO) mice were largely protected from high-fat diet (HFD) induced steatosis as evidenced by decelerated weight gains, improved insulin sensitivity, ameliorated steatotic injuries, and diminished hepatic inflammation. Brg1 contributed to lipid metabolism by trans-activating the genes involved in fatty acid esterification. Mechanistically, Brg1 interacted with and was recruited by sterol response element binding protein (SREBP1c) to the promoters of SREBP target genes and optimized the chromatin structure to facilitate SREBP1c binding. Therefore, our data have identified a previously unrecognized role for Brg1 in hepatic lipid metabolism by portraying Brg1 as an essential epigenetic co-factor for SREBP1c.  相似文献   

5.
Hepatic steatosis is a common histological feature of chronic hepatitis C. Hepatitis C virus (HCV) gene expression has been shown to alter host cell cholesterol/lipid metabolism and thus induce hepatic steatosis. Since sterol regulatory element binding proteins (SREBPs) are major regulators of lipid metabolism, we sought to determine whether genotype 2a-based HCV infection induces the expression and posttranslational activation of SREBPs. HCV infection stimulates the expression of genes related to lipogenesis. HCV induces the proteolytic cleavage of SREBPs. HCV core and NS4b derived from genotype 3a are also individually capable of inducing the proteolytic processing of SREBPs. Further, we demonstrate that HCV stimulates the phosphorylation of SREBPs. Our studies show that HCV-induced oxidative stress and subsequent activation of the phosphatidylinositol 3-kinase (PI3-K)-Akt pathway and inactivation (phosphorylation) of PTEN (phosphatase and tensin homologue) mediate the transactivation of SREBPs. HCV-induced SREBP-1 and -2 activities were sensitive to antioxidant (pyrrolidine dithiocarbamate), Ca(2+) chelator 1,2-bis(aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-tetra(acetoxymethyl) ester (BAPTA-AM), and PI3-K inhibitor (LY294002). Collectively, these studies provide insight into the mechanisms of hepatic steatosis associated with HCV infection.  相似文献   

6.
7.
8.
9.
Conditional knockout mice with targeted disruption of B-cell associated protein (BAP)31 in adult mouse liver were generated and challenged with a high-fat diet (HFD) for 36 or 96 days and markers of obesity, diabetes, and hepatic steatosis were determined. Mutant mice were indistinguishable from WT littermates, but exhibited increased HFD-induced obesity. BAP31-deletion in hepatocytes increased the expression of SREBP1C and the target genes, including acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1, and increased hepatic lipid accumulation and HFD-induced liver steatosis. Immunoprecipitation assay showed that BAP31 interacts with SREBP1C and insulin-induced gene 1 (INSIG1), and BAP31-deletion reduces INSIG1 expression, suggesting that BAP31 may regulate SREBP1C activity by modulating INSIG1 protein levels. Additionally, BAP31-deletion induced glucose and insulin intolerance, decreased Akt and glycogen synthase kinase 3β phosphorylation, and enhanced hepatic glucose production in mice. Expression of endoplasmic reticulum (ER) stress markers was significantly induced in BAP31-mutant mice. HFD-induced inflammation was aggravated in mutant mice, along with increased c-Jun N-terminal kinase and nuclear factor-κB activation. These findings demonstrate that BAP31-deletion induces SREBP activation and promotes hepatic lipid accumulation, reduces insulin signaling, impairs glucose/insulin tolerance, and increases ER stress and hepatic inflammation, explaining the protective roles of BAP31 in the development of liver steatosis and insulin resistance in HFD-induced obesity in animal models.  相似文献   

10.
11.
12.
13.
14.
Peroxisome proliferator activated-receptor (PPAR) isoforms, alpha and gamma, function as important coregulators of energy (lipid) homeostasis. PPARalpha regulates fatty acid oxidation primarily in liver and to a lesser extent in adipose tissue, whereas PPARgamma serves as a key regulator of adipocyte differentiation and lipid storage. Of the two PPARgamma isoforms, PPARgamma1 and PPARgamma2 generated by alternative splicing, PPARgamma1 isoform is expressed in liver and other tissues, whereas PPARgamma2 isoform is expressed exclusively in adipose tissue where it regulates adipogenesis and lipogenesis. Since the function of PPARgamma1 in liver is not clear, we have, in this study, investigated the biological impact of overexpression of PPARgamma1 in mouse liver. Adenovirus-PPARgamma1 injected into the tail vein induced hepatic steatosis in PPARalpha(-/-) mice. Northern blotting and gene expression profiling results showed that adipocyte-specific genes and lipogenesis-related genes are highly induced in PPARalpha(-/-) livers with PPARgamma1 overexpression. These include adipsin, adiponectin, aP2, caveolin-1, fasting-induced adipose factor, fat-specific gene 27 (FSP27), CD36, Delta(9) desaturase, and malic enzyme among others, implying adipogenic transformation of hepatocytes. Of interest is that hepatic steatosis per se, induced either by feeding a diet deficient in choline or developing in fasted PPARalpha(-/-) mice, failed to induce the expression of these PPARgamma-regulated adipogenesis-related genes in steatotic liver. These results suggest that a high level of PPARgamma in mouse liver is sufficient for the induction of adipogenic transformation of hepatocytes with adipose tissue-specific gene expression and lipid accumulation. We conclude that excess PPARgamma activity can lead to the development of a novel type of adipogenic hepatic steatosis.  相似文献   

15.
肝细胞脂肪变性是丙型肝炎患者的突出病理特征,但丙肝病毒(HCV)诱导脂肪变性的分子机制尚不清楚.为探究HCV非结构蛋白5A(NS5A)参与诱导脂肪变性的可能分子机制,本研究以HCV NS5A转基因小鼠为研究对象,采集3~16月龄NS5A转基因小鼠和同窝非转基因小鼠的肝组织,进行病理学检测,并用气相色谱 质谱(GC-MS)法分析脂质主要成分胆固醇酯的含量.采用RT-PCR法检测肝细胞中与脂质代谢密切相关基因肝X受体(LXR-alpha)、固醇调节元件结合蛋白(SREBP-1c)、脂肪酸合成酶(FAS)、硬脂酰辅酶A去饱和酶1(SCD1)、过氧化物酶体增殖物受体alpha(PPAR-alpha)的mRNA表达水平.结果表明,与同窝非转基因对照小鼠相比,3~5月龄NS5A转基因小鼠的肝组织没有发生显著的病理性变化,但6~16月龄的NS5A转基因小鼠的肝脏发生了显著的脂肪变性(47.1% vs 130%;P=0.003).与此相一致,胆固醇酯的含量在NS5A转基因小鼠的肝脏中显著升高(P < 0.01).RT PCR检测结果表明,与对照小鼠相比,14月龄NS5A转基因小鼠肝组织中与脂质代谢相关的基因LXR.alpha、SREBP.1c、FAS、SCD1的mRNA表达水平显著增高(P < 0.05),而PPAR alpha的表达则没有显著变化(P > 0.05). 以上结果提示,NS5A在小鼠肝细胞中可能通过调高LXR.alpha/SREBP.1c信号通路相关基因的表达,进而促进脂质重新合成,诱导脂肪变性.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号