首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to further elucidate our previous observation on molecular interaction of GM3, CD4 and p56Ick in microdomains of human peripheral blood lymphocytes (PBL). We analyzed GM3 distribution by immunoelectron microscopy and the association between GM3 and CD4-p56Ick complex by scanning confocal microscopy and co-immunoprecipitation experiments. Scanning confocal microscopy analysis showed an uneven signal distribution of GM3 molecules over the surface of human lymphocytes. Nearly complete colocalization areas indicated that CD4 molecules were distributed in GM3-enriched plasma membrane domains. Co-immunoprecipitation experiments revealed that CD4 and p56Ick were immunoprecipitated by IgG anti-GM3, demonstrating that GM3 tightly binds to the CD4-p56Ick complex in human PBL. In order to verify whether GM3 association with CD4 molecules may depend on the presence of p56Ick, we analyzed this association in U937, a CD4 + and p56Ick negative cell line. The immunoprecipitation with anti-GM3 revealed the presence of a 58kDa band immunostained with anti-CD4 Ab, suggesting that the GM3-CD4 interaction does not require its association with p56Ick. These findings support the view that GM3 enriched-domains may represent a functional multimolecular complex involved in signal transduction and cell activation.  相似文献   

2.
We have previously shown that NF-κB nuclear translocation can be observed upon human immunodeficiency virus type 1 (HIV-1) binding to cells expressing the wild-type CD4 molecule, but not in cells expressing a truncated form of CD4 that lacks the cytoplasmic domain (M. Benkirane, K.-T. Jeang, and C. Devaux, EMBO J. 13:5559–5569, 1994). This result indicated that the signaling cascade which controls HIV-1-induced NF-κB activation requires the integrity of the CD4 cytoplasmic tail and suggested the involvement of a second protein that binds to this portion of the molecule. Here we investigate the putative role of p56lck as a possible cellular intermediate in this signal transduction pathway. Using human cervical carcinoma HeLa cells stably expressing CD4, p56lck, or both molecules, we provide direct evidence that expression of CD4 and p56lck is required for HIV-1-induced NF-κB translocation. Moreover, the fact that HIV-1 stimulation did not induce nuclear translocation of NF-κB in cells expressing a mutant form of CD4 at position 420 (C420A) and the wild-type p56lck indicates the requirement for a functional CD4-p56lck complex.  相似文献   

3.
We have previously characterized the biogenesis of the human CD8α protein expressed in rat epithelial cells. We now describe the biosynthesis, post-translational maturation and hetero-oligomeric assembly of the human CD8α/p56lck protein complex in stable transfectants obtained from the same cell line. There were no differences in the myristilation of p56lck, or in the dimerization, O-glycosylation and transport to the plasma membrane of CD8α, between cells expressing either one or both proteins. In the doubly expressing cells, dimeric forms of CD8α established hetero-oligomeric complexes with p56lck, as revealed by co-immunoprecipitation assays performed with anti-CD8α antibody. Moreover, p56lck bound in these hetero-oligomeric complexes was endowed with auto- and hetero-phosphorylating activity. The present study shows that: (1) the newly synthesized p56lck binds rapidly to CD8α and most of the p56lck is bound to CD8α at steady state; (2) CD8α/p56lck protein complexes are formed at internal membranes as well as at the plasma membrane; and (3) about 50% of complexed p56lck reaches the cell surface.  相似文献   

4.
Abstract

Accumulating data suggest that the T-cell surface antigen CD4 transduces an independent signal during antigen-mediated T-cell activation. In vitro studies which showed that the cytoplasmic protein tyrosine kinase p56lck is present in anti-CD4 immunoprecipitates led to the model that p56lck is associated with the cytoplasmic domain of CD4. In this report we have extended these studies and examined potential CD4:p56lck associations in vivo. We show here by double immuno-fluorescence microscopy a specific co-distribution of p56lck with antibody-induced CD4 caps in intact cells. Murine T-cell hybridoma lines expressing mutant forms of CD4 were used to demonstrate that the 31 carboxyterminal aminoacids of its cytoplasmic domain, in particular cysteine-420 and cysteine-422, are crucial for the formation of CD4:p56lck complexes in vivo. The potential of the method applied is discussed with regard to studies of other transmembrane signalling systems involving src-like kinases.  相似文献   

5.
The role of lck gene in T cell proliferation and differentiation was investigated with transgenic mice carrying human lck cDNA whose expression was regulated by the promoter of mouse H-2Kb and the enhancer element of mouse IgH. RNase protection assay revealed that the lck transgene was expressed in the thymus and spleen, whereas immunoblot analysis demonstrated that amounts of p56lck in freshly isolated lymphoid organs were almost equal between transgenic mice and negative littermates. Cell-surface marker analyses of the thymocytes and peripheral lymphocytes revealed no remarkable difference between both groups. Notable finding is that the thymocytes from transgenic mice showed a significant proliferative response to the stimulation with IL-2, but not the thymocytes from negative littermates. Further analysis revealed that CD4+8 single positive thymocytes proliferated in response to IL-2. While surface expression levels of IL-2Rα and IL-2Rβ of these CD4+8 thymocytes from transgenic and control mice were almost equal before stimulation with IL-2, the expression of IL-2Rβ was induced only in transgenic thymocytes after stimulation with IL-2. Immunoblot analysis demonstrated that the expression of p56lck of transgenic thymocytes was not down-reguated at 4 hr after stimulaion with IL-2, whereas p56lck of control ones were not detectable any more at 4 hr after stimulation with IL-2. Moreover, in vitro kinase assay substantiated such unchanged expression of p56lck in the thymocytes from transgenic mice: the kinase activities of p56lck did not decrease in thymocytes from transgenic mice after stimulation with IL-2, while kinase activities of control ones were significantly down-regulated by stimulation of IL-2. These results suggested that a significant proliferative response found in the thymocytes from lck-transgenic mice after the stimulation with IL-2 was caused by a constitutive expression of p56lck in these thymocytes even after the stimulation. Our findings, therefore, support a possibility that p56lck may play a role in the IL-2R-mediated signaling system in CD4+8 thymocytes.  相似文献   

6.
 Tumor development or growth is accompanied by impaired immune responses, such as a poor proliferative response or down-regulated cytolytic T lymphocyte activity. Although recent reports have suggested that modification of the signal-transducing molecule is responsible for impaired immune responses in tumor-bearing hosts, the causes of defective immune function are not yet completely understood. Furthermore, the clinical significance of the findings is not yet clear. In this study, we investigated the alteration of several signal-transducing molecules in peripheral blood T lymphocytes (T-PBL) as well as in tumor-infiltrating lymphocytes (TIL) from human colorectal carcinoma patients and their relationship with the impaired host immune responses. A greater reduction in CD3ζ chain level was observed in TIL than in T-PBL from tumor-bearing hosts. CD3ζ chain reduction in T-PBL correlated with the clinicopathological stage of a tumor, especially with the status of lymph node metastasis. The levels of p56 lck and p59 fyn protein tyrosine kinase in T-PBL were also compared between tumor-bearing hosts and normal healthy volunteers. In T-PBL from tumor-bearing hosts, expression of protein tyrosine kinase p59 fyn was significantly lower than that of p56 lck . However, the level of CD3ζ chain expression did not correlate with T lymphocyte functions such as T lymphocyte proliferative response or allogeneic target cell lysis. Received: 25 September 1996 / Accepted: 25 August 1997  相似文献   

7.
The CD4 and CD8 antigens on T cells have been shown to associate with the Src family member p56lck and a GTP-binding protein, p32. The identification of receptor interactions with intracellular mediators is essential in the elucidation of downstream signals mediated by engagement of these receptor complexes. In this study, we report the detection of an additional 110-kDa polypeptide (p110) associated with the CD4-p56lck complex in human peripheral blood T lymphocytes and leukemic T-cell lines. p110 bound preferentially to CD4-p56lck as an assembled complex and poorly, if at all, to the individual components. p110 was recognized directly by an antiserum to the C-terminal region of the serine/threonine kinase Raf-1 and is related to a p110 polypeptide detected in anti-Raf-1 immunoprecipitates. Despite its association with the CD4-p56lck complex, p110 was found to be phosphorylated predominantly on serine residues. Furthermore, phorbol ester treatment of cells resulted in a transient increase in the detection of p110 associated with CD4-p56lck, concomitant with the modulation of CD4-p56lck from the cell surface. This Raf-1-related p110 is therefore likely to play a role in signals generated from the CD4-p56lck complex. p110 may serve as a bridge between the CD4-p56lck complex and the serine/threonine kinase pathways of T-cell activation.  相似文献   

8.
Osmotic cell swelling activates Cl channels to achieve anion efflux. In this study, we find that both the tyrosine kinase inhibitor herbimycin A and genetic knockout of p56lck, a src-like tyrosine kinase, block regulatory volume decrease (RVD) in a human T cell line. Activation of a swelling-activated chloride current (ICl−swell) by osmotic swelling in whole-cell patch-clamp experiments is blocked by herbimycin A and lavendustin. Osmotic activation of ICl−swell is defective in p56lck-deficient cells. Retransfection of p56lck restores osmotic current activation. Furthermore, tyrosine kinase activity is sufficient for activation of ICl−swell. Addition of purified p56lck to excised patches activates an outwardly rectifying chloride channel with 31 pS unitary conductance. Purified p56lck washed into the cytoplasm activates ICl−swell in native and p56lck-deficient cells even when hypotonic intracellular solutions lead to cell shrinkage. When whole-cell currents are activated either by swelling or by p56lck, slow single-channel gating events can be observed revealing a unitary conductance of 25–28 pS. In accordance with our patch-clamp data, osmotic swelling increases activity of immunoprecipitated p56lck. We conclude that osmotic swelling activates ICl−swell in lymphocytes via the tyrosine kinase p56lck.  相似文献   

9.
In this report we demonstrated that cellular prion protein is strictly associated with gangliosides in microdomains of neural and lymphocytic cells. We preliminarily investigated the protein distribution on the plasma membrane of human neuroblastoma cells, revealing the presence of large clusters. In order to evaluate its possible role in tyrosine signaling pathway triggered by GEM, we analyzed PrPc presence in microdomains and its association with gangliosides, using cholera toxin as a marker of GEM in neuroblastoma cells and anti-GM3 MoAb for identification of GEM in lymphoblastoid cells. In neuroblastoma cells scanning confocal microscopical analysis revealed a consistent colocalization between PrPc and GM1 despite an uneven distribution of both on the cell surface, indicating the existence of PrPc-enriched microdomains. In lymphoblastoid T cells PrPc molecules were mainly, but not exclusively, colocalized with GM3. In addition, PrPc was present in the Triton-insoluble fractions, corresponding to GEM of cell plasma membrane. Additional evidence for a specific PrPc-GM3 interaction in these cells was derived from the results of TLC analysis, showing that prion protein was associated with GM3 in PrPc immunoprecipitates. The physical association of PrPc with ganglioside GM3 within microdomains of lymphocytic cells strongly suggests a role for PrPc-GM3 complex as a structural component of the multimolecular signaling complex involved in T cell activation and other dynamic lymphocytic plasma membrane functions.  相似文献   

10.
11.
We have previously shown that the presence of the CD4 cytoplasmic tail is critical for human immunodeficiency virus (HIV)-induced apoptosis (J. Corbeil, M. Tremblay, and D. D. Richman, J. Exp. Med. 183:39–48, 1996). We have pursued our investigation of the role of the CD4 transduction pathway in HIV-induced apoptosis. To do this, wild-type and mutant forms of the CD4 cytoplasmic tail were stably expressed in the lymphoblastoid T-cell line A2.01. Apoptosis was prevented when CD4 truncated at residue 402 was expressed; however, cells expressing mutated receptors that do not associate with p56lck (mutated at the dicysteine motif and truncated at residue 418) but which conserved proximal domains of the cytoplasmic tail underwent apoptosis like wild-type CD4. The differences between wild-type and mutated receptors in the induction of apoptosis were not related to levels of p56lck or NF-κB activation. Initial signaling through the CD4 receptor played a major role in the sensitization of HIV-infected T cells to undergo apoptosis. Incubation of HIV-infected cells with monoclonal antibody (MAb) 13B8-2, which binds to CD4 in a region critical for dimerization of the receptor, prevented apoptosis without inhibiting HIV replication. Moreover, the apoptotic process was not related to Fas-Fas ligand interaction; however, an antagonistic anti-Fas MAb (ZB-4) enhanced apoptosis in HIV-infected cells without inducing apoptosis in uninfected cells. These observations demonstrate that CD4 signaling mediates HIV-induced apoptosis by a mechanism independent of Fas-Fas ligand interaction, does not require p56lck signaling, and may involve a critical region for CD4 dimerization.  相似文献   

12.
13.
The T cell-specific tyrosine kinase, p56lck, plays crucial roles in T cell receptor (TCR)-mediated T cell activation. Here, we report that SOCS-6 (suppressor of cytokine signaling-6) is a negative regulator of p56lck. SOCS-6 was identified as a protein binding to the kinase domain of p56lck through yeast two-hybrid screening. SOCS-6 bound specifically to p56lck (F505), which mimics the active form of p56lck, but not to wild type p56lck. In Jurkat T cells, SOCS-6 binding to p56lck was detected 1–2 h after TCR stimulation. Confocal microscopy showed that upon APC-T cell conjugation, SOCS-6 was recruited to the immunological synapse and colocalized with the active form of p56lck. SOCS-6 promoted p56lck ubiquitination and its subsequent targeting to the proteasome. Moreover, SOCS-6 overexpression led to repression of TCR-dependent interleukin-2 promoter activity. These results establish that SOCS-6 acts as a negative regulator of T cell activation by promoting ubiquitin-dependent proteolysis.  相似文献   

14.
CXCR4 (fusin) is a chemokine receptor which is involved as a coreceptor in gp120 binding to the cell surface. In this study we provide evidence that binding of gp120 triggers CXCR4 recruitment to glycosphingolipid-enriched microdomains. Scanning confocal microscopy showed a nearly complete localization of CXCR4 within GM3-enriched plasma membrane domains of SupT1 cells and coimmunoprecipitation experiments revealed that CXCR4 was immunoprecipitated by IgG anti-GM3 after gp120 pretreatment. These findings reveal that gp120 binding induces a strict association between CXCR4 and ganglioside GM3, supporting the view that GM3 and CXCR4 are components of a functional multimolecular complex critical for HIV-1 entry.  相似文献   

15.
Recent evidence demonstrated that T cell activation leads to the redistribution of membrane and intracellular kinase-rich raft microdomains at the site of TCR engagement. In this investigation we demonstrated by high performance thin layer chromatography, gas chromatographic, and mass spectrometric analyses that GM3 is the main ganglioside constituent of these microdomains in human lymphocytes. Then we analyzed GM3 distribution and its interaction with the phosphorylation protein Zap-70. Human T lymphocytes were stimulated with anti-CD3 and anti-CD28. Immunofluorescence microscopy analysis revealed a clustered GM3 distribution over the cell surface and an intracellular localization resembling specific cytoplasmic compartment(s). Scanning confocal microscopy showed that T cell activation induced a significant association between GM3 and Zap-70, as revealed by nearly complete colocalization areas; very few colocalization areas were detected in unstimulated cells. Coimmunoprecipitation experiments revealed that GM3 was immunoprecipitated by anti-Zap-70 only after co-stimulation through CD3 and CD28 as detected by both thin layer chromatography and immunoblotting. Therefore, T cell activation does not promote a redistribution of glycosphingolipid-enriched microdomains but induces Zap-70 translocation in selective membrane domains in which Zap-70 may interact with GM3. These findings suggest that GM3 is a component of a multimolecular signaling complex involved in T cell activation.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) Nef interferes with the endocytic machinery to modulate the cell surface expression of CD4. However, the basal trafficking of CD4 is governed by different rules in the target cells of HIV-1: whereas CD4 is rapidly internalized from the cell surface in myeloid cells, CD4 is stabilized at the plasma membrane through its interaction with the p56lck kinase in lymphoid cells. In this study, we showed that Nef was able to downregulate CD4 in both lymphoid and myeloid cell lines but that an increase in the internalization rate of CD4 could be observed only in lymphoid cells. Expression of p56lck in nonlymphoid CD4-expressing cells restores the ability of Nef in order to increase the internalization rate of CD4. Concurrent with this observation, the expression of a p56lck-binding-deficient mutant of CD4 in lymphoid cells abrogates the Nef-induced acceleration of CD4 internalization. We also show that the expression of Nef causes a decrease in the association of p56lck with cell surface-expressed CD4. Regardless of the presence of p56lck, the downregulation of CD4 by Nef was followed by CD4 degradation. Our results imply that Nef uses distinct mechanisms to downregulate the cell surface expression levels of CD4 in either lymphoid or myeloid target cells of HIV-1.Besides proteins that are essential for proper virus processing and assembly, the genomes of primate lentiviruses such as human immunodeficiency virus type 1 (HIV-1) encode auxiliary proteins that modulate viral infectivity. The 27-kDa auxiliary protein Nef is a key element in the progression of primary HIV-1 infection toward AIDS. Cases of patients infected with HIV-1 strains harboring a deletion in the nef gene or a defective nef allele have been reported. Some of these patients exhibit asymptomatic or slow progression toward the disease (6, 17, 37). In vitro, Nef facilitates viral replication and enhances the infectivity of viral particles (13, 47, 69). The mechanisms involved in the Nef-induced increase of viral infectivity remain elusive; however, it is a multifactorial process related to the ability of Nef to alter the trafficking of host cell proteins.Indeed, the most documented effect of Nef during the course of viral infection is its ability to disturb the clathrin-dependent trafficking machinery involved in the transport of transmembrane proteins through endosomal compartments. This leads to the modulation of the level of cell surface expression for some receptors, including CD4, which is the primary receptor of HIV-1 (35) and major histocompatibility complex class I (reviewed in references 22 and 27). The downregulation of CD4, which results in the impairment of the immunological synapse (72) and the downregulation of major histocompatibility complex class I molecules (reviewed in reference 16), is believed to contribute to the escape of HIV-1-infected cells from immunosurveillance. Moreover, the downregulation of CD4 helps avoid superinfection of cells, which would be deleterious to the virus (reviewed in reference 21), and has a direct impact on viral fitness by allowing better incorporation of the functional envelope in viral particles produced from CD4-expressing cells (3, 36, 53).Nef-induced cell surface downregulation of CD4 is efficient in all CD4-expressing cells and depends on the integrity of a di-Leu motif at position 164/165 of the C-terminal flexible loop of HIV-1 Nef (2, 9, 25). This di-Leu motif allows for the interaction with clathrin-associated adaptor protein (AP) complexes that participate in the clathrin-dependent vesicular transport within the endocytic pathway. The AP type 2 (AP-2) complex is localized at the plasma membrane and is essential to the assembly and function of clathrin-coated pits involved in the internalization of receptors from the cell surface (59). The interaction of Nef with AP-2 is well delineated and has been proposed to enhance the targeting of CD4 to clathrin-coated pits and its internalization (10, 12, 26, 32, 39).Helper T lymphocytes are the predominant cell type that expresses CD4; however, CD4 is also present at the surfaces of monocytes and macrophages (70), where its function is yet to be elucidated. Whereas cell surface CD4 is rapidly internalized in myeloid cells, CD4 is stabilized at the plasma membrane in lymphoid cells through its interaction with the Src family protein tyrosine kinase p56lck. Cys residues located at positions 420/422 in the CD4 cytoplasmic tail are essential to the constitutive association with p56lck (73). Besides its role in signal transduction, this interaction also correlates with an accumulation of CD4 in lipid rafts and enhanced exclusion of CD4 from clathrin-coated pits (50).In T cells, treatment with phorbol esters such as phorbol 12-myristate 13-acetate (PMA) provokes the phosphorylation of Ser residues found in the cytoplasmic tail of CD4. This correlates with a decreased association of p56lck with CD4 and the internalization of the receptor (24, 32-34, 41, 45, 48, 52, 56, 61, 66-68). Nef-induced CD4 downregulation is known to be independent of Ser phosphorylation (20) and is therefore governed by mechanisms different from those involved in PMA-induced CD4 downregulation. However, the Leu-based sorting motif in the CD4 cytoplasmic tail is critical for both PMA and Nef-induced CD4 downregulation (2, 5, 24, 31, 56, 60, 68), thus indicating that despite being different, the mechanisms involved in Nef- and PMA-induced CD4 downregulation partially overlap.In the present study, we investigated whether the mechanisms used by Nef to downregulate CD4 are cell type-dependent processes. We looked at the trafficking and steady-state expression of CD4 in the main target cells of HIV-1, CD4-positive T lymphocytes, and cells of the monocyte/macrophage lineage. Our results demonstrate that the presence of p56lck has a direct impact on the mechanisms used by Nef to downregulate CD4 from the cell surface of T lymphocytes. They also reveal that Nef uses distinct pathways to decrease levels of cell surface expression of CD4 in lymphoid or myeloid target cells of HIV-1.  相似文献   

17.
In this study we analyzed by immunofluorescence, laser confocal microscopy, immunoelectron microscopy and label fracture technique the ganglioside distribution on the plasma membrane of several different cell types: human peripheral blood lymphocytes (PBL), Molt-4 lymphoid cells, and NIH 3T3 fibroblasts, which mainly express monosialoganglioside GM3, and murine NS20Y neuroblastoma cells, which have been shown to express a high amount of monosialoganglioside GM2. Our observations showed an uneven distribution of both GM3 and GM2 on the plasma membrane of all cells, confirming the existence of ganglioside-enriched microdomains on the cell surface. Interestingly, in lymphoid cells the clustered immunolabeling appeared localized over both the microvillous and the nonvillous portions of the membrane. Similarly, in cells growing in monolayer, the clusters were distributed on both central and peripheral regions of the cell surface. Therefore, glycosphingolipid clusters do not appear confined to specific areas of the plasma membrane, implying general functions of these domains, which, as structural components of a cell membrane multimolecular signaling complex, may be involved in cell activation and adhesion, signal transduction and, when associated to caveolae, in endocytosis of specific molecules.  相似文献   

18.
The human immunodeficiency virus binds to CD4+ T lymphocytes through the interaction of its envelope glycoprotein (gp120) with the CD4 molecule. The src-related protein tyrosine kinase p56lck is physically associated with CD4 and is co-immunoprecipitated by CD4 monoclonal antibody (mAb). Activators of protein kinase C (PKC) cause the dissociation of p56lck from CD4. Here we report that gp120 mAb immunoprecipitated the p56lck.CD4.gp120 complex after short term treatment (20 min) of human T lymphocytes with gp120. The p56lck that was associated with the CD4.gp120 complex was dissociated by activators of PKC. This effect was abolished by pretreatment of cells with PKC inhibitors. Thus the p56lck.CD4.gp120 immune complex immunoprecipitated by gp120 mAb behaves in a similar manner, with respect to PKC activation or inhibition, to the p56lck.CD4 complex immunoprecipitated by CD4 mAb. Short term treatment of cells with gp120, followed by gp120 mAb, resulted in an increase in the tyrosine kinase activity of p56lck associated with CD4. However, the amount of enzyme associated with CD4 remained unchanged. Long term treatment (20 h) of human T lymphocytes with gp120 resulted in the down-regulation of cell surface CD4 molecules. A parallel decrease in CD4-associated gp120 was also observed. In addition, gp120 caused the dissociation of p56lck and CD4. However, the dissociation of the p56lck from CD4 occurred at much faster rate than the down-regulation of surface CD4 molecules. Such mechanisms may account for the down-regulation of cell surface CD4 molecules and the depletion of functional CD4+ T lymphocytes which are characteristic of human immunodeficiency virus infections and acquired immune deficiency syndrome pathogenesis.  相似文献   

19.
The specificity of the T-cell receptor (TCR) and its interaction with coreceptors play a crucial role in T-cell passing through developmental checkpoints and, eventually, determine the efficiency of adaptive immunity. The genes for the α and β chains of TCR were cloned from T-cell hybridoma 1D1, which was obtained by fusion of BWZ.36CD8α cells with CD8+ memory cells specific for the H-2Kb MHC class I molecule. Retroviral transduction of the 1D1 TCR genes and the CD4 and CD8 coreceptor genes was used to obtain 4G4 thymoma variants that exposed the CD3/TCR complex together with CD4, CD8, or both of the coreceptors on their surface. Although the main function of CD4 is to stabilize the interaction of TCR with MHC class II molecules, CD4 was found to mediate the activation of transfected cells via TCR specific for the H-2Kb MHC class I molecule. Moreover, CD4 proved to dominate over CD8, since the response of CD4+CD8+ transfectants was suppressed by antibodies against CD4 and the Ab MHC class II molecule but not to CD8. The response of CD4+ transfectants was not due to a cross-reaction of 1D1 TCR with MHC class II molecules, because the transfectants did not respond to splenocytes of H-2b knockout mice, which were defective in the assembly of the MHC class I molecule/β2 microglobulin/peptide complex and did not expose the complex on cell surface. The domination was not due to sequestration of p56lck kinase, since CD4 devoid of the kinase-binding site was functional in 4G4 thymoma cells. The results were used to explain some features of intrathymic cell selection and assumed to provide an experimental basis for developing new methods of anticancer gene therapy.  相似文献   

20.
 The adoptive transfer of tumor-draining lymph node (LN) T cells activated ex vivo with anti-CD3 and interleukin 2 (IL-2) mediates the regression of the poorly immunogenic murine melanoma D5. The efficacy of the activated LN cells is augmented when the sensitizing tumor is a genetically modified variant (designated D5G6) that secretes granulocyte/macrophage-colony-stimulating factor. In contrast to anti-CD3/IL-2-activated LN cells, adoptive transfer of freshly isolated tumor-draining LN T cells has no therapeutic activity. To determine whether the acquisition of antitumor function during ex vivo activation is associated with modifications in signal transduction capacity, the protein tyrosine kinases p56 lck and p59 fyn and proteins of the NF-κB family were analyzed in tumor-draining LN T cells. The levels of p56 lck and p59 fyn were lower in tumor-draining than in normal LN T cells and production of tyrosine-phosphorylated substrates was markedly depressed following anti-CD3 stimulation. After 5-day anti-CD3/IL-2 activation, levels of p56 lck and p59 fyn and protein tyrosine kinase activity increased. Interestingly, the levels of p56 lck , p59 fyn , and tyrosine kinase activity were higher in activated T cells derived from LN that drained D5G6 than they were in those from D5 tumors. In contrast, the cytoplasmic levels of c-Rel and Rel A were normal in freshly isolated tumor-draining LN, as was nuclear κB DNA-binding activity induced by anti-CD3 mAb or phorbol myristate acetate. Stimulation of activated LN cells with D5 tumor cells induced the nuclear translocation of NF-κB. These findings indicate that the recovery of proteins mediating signal transduction through the T cell receptor/CD3 complex in LN T cells activated ex vivo was associated with the acquisition of antitumor function. Received: 28 August 1997 / Accepted: 23 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号