首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gangliosides, sialic acid containing glycosphigolipids, are ubiquitous constituents of cell plasma membranes. Each cell type shows a peculiar ganglioside expression pattern. In human T lymphocytes monosialoganglioside GM3 represents the main ganglioside constituent of cell plasma membrane where it is concentrated in glycosphingolipid-enriched microdomains (GEM). The presence of tyrosine kinase receptors, mono- (Ras, Rap) and heterotrimeric G proteins, Src-like tyrosine kinases (lck, lyn, fyn), PKC isozymes, glycosylphosphatidylinositol (GPI)-anchored proteins and, after T cell activation, the Syk-family kinase Zap-70, prompts these portions of the plasma membrane to be considered as "glycosignaling domains." In particular, during T cell activation and/or other dynamic functions of the cell, such as apoptosis, key signaling molecules are recruited to these microdomains, where they strictly interact with GM3. The association of transducer proteins with GM3 in microdomains suggests that this ganglioside is the main marker of GEM in human lymphocytes and is a component of a cell plasma membrane multimolecular signaling complex involved in cell-cell interaction, signal transduction, and cell activation.  相似文献   

2.
Gangliosides, sialic acid containing glycosphigolipids, are ubiquitous constituents of cell plasma membranes. Each cell type shows a peculiar ganglioside expression pattern. In human T lymphocytes monosialoganglioside GM3 represents the main ganglioside constituent of cell plasma membrane where it is concentrated in glycosphingolipid-enriched microdomains (GEM). The presence of tyrosine kinase receptors, mono- (Ras, Rap) and heterotrimeric G proteins, Src-like tyrosine kinases (lck, lyn, fyn), PKC isozymes, glycosylphosphatidylinositol (GPI)-anchored proteins and, after T cell activation, the Syk-family kinase Zap-70, prompts these portions of the plasma membrane to be considered as “glycosignaling domains.” In particular, during T cell activation and/or other dynamic functions of the cell, such as apoptosis, key signaling molecules are recruited to these microdomains, where they strictly interact with GM3. The association of transducer proteins with GM3 in microdomains suggests that this ganglioside is the main marker of GEM in human lymphocytes and is a component of a cell plasma membrane multimolecular signaling complex involved in cell-cell interaction, signal transduction, and cell activation. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The aim of this study was to further elucidate our previous observation on molecular interaction of GM3, CD4 and p56Ick in microdomains of human peripheral blood lymphocytes (PBL). We analyzed GM3 distribution by immunoelectron microscopy and the association between GM3 and CD4-p56Ick complex by scanning confocal microscopy and co-immunoprecipitation experiments. Scanning confocal microscopy analysis showed an uneven signal distribution of GM3 molecules over the surface of human lymphocytes. Nearly complete colocalization areas indicated that CD4 molecules were distributed in GM3-enriched plasma membrane domains. Co-immunoprecipitation experiments revealed that CD4 and p56Ick were immunoprecipitated by IgG anti-GM3, demonstrating that GM3 tightly binds to the CD4-p56Ick complex in human PBL. In order to verify whether GM3 association with CD4 molecules may depend on the presence of p56Ick, we analyzed this association in U937, a CD4 + and p56Ick negative cell line. The immunoprecipitation with anti-GM3 revealed the presence of a 58kDa band immunostained with anti-CD4 Ab, suggesting that the GM3-CD4 interaction does not require its association with p56Ick. These findings support the view that GM3 enriched-domains may represent a functional multimolecular complex involved in signal transduction and cell activation.  相似文献   

4.
The aim of this study was to further elucidate our previous observation on molecular interaction of GM3, CD4 and p56lck in microdomains of human peripheral blood lymphocytes (PBL). We analyzed GM3 distribution by immunoelectron microscopy and the association between GM3 and CD4-p56lck complex by scanning confocal microscopy and co-immunoprecipitation experiments. Scanning confocal microscopy analysis showed an uneven signal distribution of GM3 molecules over the surface of human lymphocytes. Nearly complete colocalization areas indicated that CD4 molecules were distributed in GM3-enriched plasma membrane domains. Co-immunoprecipitation experiments revealed that CD4 and p56lck were immunoprecipitated by IgG anti-GM3, demonstrating that GM3 tightly binds to the CD4-p56lck complex in human PBL. In order to verify whether GM3 association with CD4 molecules may depend on the presence of p56lck, we analyzed this association in U937, a CD4+and p56lck negative cell line. The immunoprecipitation with anti-GM3 revealed the presence of a 58[emsp4 ]kDa band immunostained with anti-CD4 Ab, suggesting that the GM3-CD4 interaction does not require its association with p56lck. These findings support the view that GM3 enriched-domains may represent a functional multimolecular complex involved in signal transduction and cell activation.  相似文献   

5.
In this investigation we show that the death-inducing signaling complex (DISC) associates with glycosphingolipid-enriched microdomains (GEM) upon CD95/Fas engagement. We primarily analyzed the ganglioside pattern and composition of GEM after triggering through CD95/Fas and observed that GM3 is the main ganglioside constituent of GEM. Stimulation with anti-CD95/Fas did not cause translocation of gangliosides within or from the GEM fraction. Scanning confocal microscopy showed that triggering through CD95/Fas induced a significant GM3-caspase-8 association, as revealed by nearly complete colocalization areas. Coimmunoprecipitation experiments demonstrated that GM3 and GM1 were immunoprecipitated by anti-caspase-8 only after triggering through CD95/Fas. This association was supported by the recruitment of caspase-8, as well as of CD95/Fas, to GEM upon CD95/Fas engagement, as revealed by the analysis of linear sucrose gradient fractions. It indicates that the DISC associates with GEM; no changes were observed in the distribution of caspase-9. The disruption of GEM by methyl-beta-cyclodextrin prevented DNA fragmentation, as well as CD95/Fas clustering on the cell surface, demonstrating a role for GEM in initiating of Fas signaling. These findings strongly suggest a role for gangliosides as structural components of the membrane multimolecular signaling complex involved in CD95/Fas receptor-mediated apoptotic pathway.  相似文献   

6.
In this study we analyzed the interaction of prion protein PrPC with components of glycosphingolipid-enriched microdomains in lymphoblastoid T cells. PrPC was distributed in small clusters on the plasma membrane, as revealed by immunoelectron microscopy. PrPC is present in microdomains, since it coimmunoprecipitates with GM3 and the raft marker GM1. A strict association between PrPC and Fyn was revealed by scanning confocal microscopy and coimmunoprecipitation experiments. The phosphorylation protein ZAP-70 was immunoprecipitated by anti-PrP after T cell activation. These results demonstrate that PrPC interacts with ZAP-70, suggesting that PrPC is a component of the multimolecular signaling complex within microdomains involved in T cell activation.  相似文献   

7.
Lateral compartmentalization of membrane proteins into microdomains regulates signal transduction; however, structural determinants are incompletely understood. Membrane glycoproteins bind galectins in proportion to the number (i.e. NX(S/T) sites) and degree of GlcNAc branching within attached N-glycans, forming a molecular lattice that negatively regulates T cell function and autoimmunity. We find that in resting T cells, partition of CD45 inside and T cell receptor (TCR)/CD4-Lck/Zap-70 outside microdomains is positively and negatively regulated by the galectin lattice and actin cytoskeleton, respectively. In the absence of TCR ligands, the galectin lattice counteracts F-actin to retain CD45 in microdomains while concurrently blocking TCR/CD4-Lck/Zap-70 partition to microdomains by preventing a conformational change in the TCR that recruits Nck/Wiscott Aldrich Syndrome (WASp)/SLP76/F-actin/CD4 to TCR. The counterbalancing activities of the galectin lattice and actin cytoskeleton negatively and positively regulate Lck activity in resting cells and CD45 versus TCR clustering and signaling at the early immune synapse, respectively. Microdomain-localized CD45 inactivates Lck and inhibits TCR signaling at the early immune synapse. Thus, the galectin lattice and actin cytoskeleton interact on opposing sides of the plasma membrane to control microdomain structure and function, coupling basal growth signaling with thresholds to activation.  相似文献   

8.
Janich P  Corbeil D 《FEBS letters》2007,581(9):1783-1787
The apical domain of epithelial cells is composed of distinct subdomains such as microvilli, primary cilia and a non-protruding region. Using the cholesterol-binding protein prominin-1 as a specific marker of plasma membrane protrusions we have previously proposed the co-existence of different cholesterol-based lipid microdomains (lipid rafts) within the apical domain [R?per, K., Corbeil, D. and Huttner, W.B. (2000), Retention of prominin in microvilli reveals distinct cholesterol-based lipid microdomains in the apical plasma membrane. Nat. Cell Biol. 2, 582-592]. To substantiate the hypothesis that the microvillar plasma membrane subdomains contain a distinct set of lipids compared to the planar portion we have investigated the distribution of prominin-1 and two raft-associated gangliosides GM(1) and GM(3) by fluorescence microscopy. GM(1) was found to co-localize with prominin-1 on microvilli whereas GM(3) was segregated from there suggesting its localization in the planar region. Regarding the primary cilium, overlapping fluorescent signals of GM(1) or GM(3) and prominin-1 were observed. Thus, our data demonstrate that specific ganglioside-enriched rafts are found in different apical subdomains and reveal that two plasma membrane protrusions with different structural bases (actin for the microvillus and tubulin for the cilium) are composed of distinct types of lipid.  相似文献   

9.
The expression and surface distribution of monosialoganglioside GM3 on the plasma membranes of NIH3T3 fibroblasts cultured at semiconfluence were analyzed by immunofluorescence as well as by immunogold electron microscopy on thin sections and surface replicas. The GM3 expression was highly variable from cell to cell and the distribution of the ganglioside on the positive cells appeared punctate. Quantitative immunogold electron microscopy showed the existence of well-defined GM3 clusters of different sizes scattered all over the cell surfaces. Double immunofluorescence analysis of 5-bromo-2’-deoxyuridine incorporation to identify proliferating cells and of GM3 expression indicated that most of the GM3-positive cells appear unable to synthesize DNA and demonstrated a growth-dependent expression of GM3. Accepted: 16 November 1999  相似文献   

10.
To investigate the requirements for CD2 expression in the activation of T lymphocytes via the CD3-TCR complex, we produced and characterized a series of CD2-variants of the IL-2 producing Jurkat leukemia cell line, J32 (surface phenotype, CD2+, CD3+, CD28+). These mutants were derived by radiation and immunoselection, and were cloned under limiting dilution conditions. A total of 3 out of 30 of these mutants selectively lost the expression of both CD2 surface molecules and CD2 mRNA, and retained the expression of the CD3-TCR complex and the CD28 molecule. A mitogenic combination of anti-CD2 antibodies (9.6 + 9-1) failed to stimulate activation of these variants as measured by mobilization of intracellular Ca2+ and by IL-2 production. The CD2- mutants stimulated with anti-CD3 or anti-TCR mAb revealed an 8- to 32-fold decrease in IL-2 production and IL-2 mRNA accumulation as compared with the parental cells. No alteration of CD3-TCR-induced mobilization of intracellular Ca2+ was observed in the CD2- mutants. Reconstitution of CD2 expression by gene transfer in two J32 CD2- mutants restored IL-2 production and IL-2 mRNA accumulation in responses to both anti-CD2 and anti-CD3-TCR mAb. These results are the first direct demonstration of the requirement for CD2 molecules in optimizing IL-2 response in human T cells stimulated via CD3-TCR complex.  相似文献   

11.
Presence of microdomains has been postulated in the cell membrane, but two-dimensional distribution of lipid molecules has been difficult to determine in the submicrometer scale. In the present paper, we examined the distribution of gangliosides GM1 and GM3, putative raft molecules in the cell membrane, by immunoelectron microscopy using quick-frozen and freeze-fractured specimens. This method physically immobilized molecules in situ and thus minimized the possibility of artifactual perturbation. By point pattern analysis of immunogold labeling, GM1 was shown to make clusters of <100 nm in diameter in normal mouse fibroblasts. GM1-null fibroblasts were not labeled, but developed a similar clustered pattern when GM1 was administered. On cholesterol depletion or chilling, the clustering of both endogenous and exogenously-loaded GM1 decreased significantly, but the distribution showed marked regional heterogeneity in the cells. GM3 also showed cholesterol-dependent clustering, and although clusters of GM1 and GM3 were found to occasionally coincide, these aggregates were separated in most cases, suggesting the presence of heterogeneous microdomains. The present method enabled to capture the molecular distribution of lipids in the cell membrane, and demonstrated that GM1 and GM3 form clusters that are susceptible to cholesterol depletion and chilling.  相似文献   

12.
13.
The antibody 13B8.2, which is directed against the CDR3-like loop on the D1 domain of CD4, induces CD4/ZAP-70 reorganization and ceramide release in membrane rafts. Here, we investigated whether CD4/ZAP-70 compartmentalization could be mediated by an effect of 13B8.2 on the Carma1–Bcl10–MALT1 complex in membrane rafts. We report that treatment of CD3/CD28-activated Jurkat T cells with 13B8.2, but not rituximab, excluded Carma1–Bcl10–MALT1 proteins from GM1+ membrane rafts and concomitantly decreased NF-κB activation. Fluorescence confocal imaging confirmed that Carma1–Bcl10 and Carma1-MALT1 co-patching, observed in GM1+ membrane rafts following CD3/CD28 activation, were abrogated after a 24 h-treatment with 13B8.2. The CD4/ZAP-70 compartmentalization in membrane rafts induced by 13B8.2 is thus related to Carma1–Bcl10–MALT1 raft exclusion.  相似文献   

14.
Although it is well accepted that intercellular adhesion involving the CD11a/CD18 (LFA-1) complex is critical in a wide array of T cell-dependent processes, recent demonstrations of an LFA-1 high avidity state, induced by triggering the T cell receptor (TCR) complex, has raised questions about the intracellular signals generated and molecular events leading to effective cell coupling, as well as their orderly sequence. In this study, we assessed the effects of T cell activation on the actin-based cytoskeleton, and LFA-1, as well as their interaction. Crosslinking the TCR complex with anti-CD3 mAb resulted in actin polymerization and colocalization with LFA-1, as detected by fluorescence microscopy. This association was confirmed by immunoprecipitating LFA-1 from the detergent insoluble, cytoskeletal-associated membrane fraction after TCR crosslinking. These consequences were inhibited by the protein kinase C (PKC) inhibitor staurosporine or by PKC desensitization, as was a transient CD11a hyperphosphorylation, induced by monoclonal anti-CD3. Furthermore, a small percentage of beta 2-deficient T cells maintained the ability to rearrange the cytoskeleton in response to TCR complex activation, with F-actin-VLA4 colocalization. These results provide evidence that the important consequences of TCR-induced signal transduction include a PKC-dependent cytoskeletal rearrangement, involving an association between leukocyte integrins and F-actin. We discuss the implications of these findings with respect to effective T cell functions.  相似文献   

15.
In this study we analyzed the signaling pathway triggered by GM3 in lymphoblastoid T-cells. In these cells, GM3 induced cPLA2 activation, arachidonic acid release, and PKC-delta translocation. In order to clarify the upstream molecular signals triggered by GM3, we analyzed the activation of extracellular signal-regulated kinase (ERK)s, a downstream effector of Ras-regulated cytoplasmic kinase cascade. Our results showed that GM3 treatment led to rapid ERK phosphorylation in lymphoblastoid T-cells, as detected by anti-phospho-p44/42 MAP kinase. Similar findings were found in human peripheral blood lymphocytes. Moreover, we showed that GM3 specifically phosphorylated ERK-2, as revealed by anti-phosphotyrosine reactivity on both cell free lysates and ERKs immunoprecipitates. The role of the CD4 cytoplasmic domain in GM3-triggered signaling pathway was investigated using A2.01/CD4-cyt399 cells, which had been transfected with a mutant form of CD4 lacking the bulk of the cytoplasmic domain. In these cells GM3 induced cPLA2 activation, arachidonic acid release, and PKC-delta translocation, but not CD4 endocytosis, indicating that the CD4 cytoplasmic domain plays a key role in GM3-triggered CD4 endocytosis and the GM3-triggered biochemical pathway is upstream of CD4 phosphorylation. These findings strongly suggest that GM3 triggers a novel signaling pathway involved in the regulation of cellular functions.  相似文献   

16.
We previously reported the isolation of a cDNA encoding a T cell-specific adapter protein (TSAd). Its amino acid sequence contains an SH2 domain, tyrosines in protein binding motifs, and proline-rich regions. In this report we show that expression of TSAd is induced in normal peripheral blood T cells stimulated with anti-CD3 mAbs or anti-CD3 plus anti-CD28 mAbs. Overexpression of TSAd in Jurkat T cells interfered with TCR-mediated signaling by down-modulating anti-CD3/PMA-induced IL-2 promoter activity and anti-CD3 induced Ca2+ mobilization. The TCR-induced tyrosine phosphorylation of phospholipase C-gamma1, SH2-domain-containing leukocyte-specific phosphoprotein of 76kDa, and linker for activation of T cells was also reduced. Furthermore, TSAd inhibited Zap-70 recruitment to the CD3zeta-chains in a dose-dependent manner. Consistent with this, Lck kinase activity was reduced 3- to 4-fold in COS-7 cells transfected with both TSAd and Lck, indicating a regulatory effect of TSAd on Lck. In conclusion, our data strongly suggest an inhibitory role for TSAd in proximal T cell activation.  相似文献   

17.
Recent studies have highlighted the existence of discrete microdomains at the cell surface that are distinct from caveolae. The function of these microdomains remains unknown. However, recent evidence suggests that they may participate in a subset of transmembrane signaling events. In hematopoietic cells, these low density Triton-insoluble (LDTI) microdomains (also called caveolae-related domains) are dramatically enriched in signaling molecules, such as cell surface receptors (CD4 and CD55), Src family tyrosine kinases (Lyn, Lck, Hck, and Fyn), heterotrimeric G proteins, and gangliosides (GM1 and GM3). Human T lymphocytes have become a well established model system for studying the process of phorbol ester-induced down-regulation of CD4. Here, we present evidence that phorbol 12-myristate 13-acetate (PMA)-induced down-regulation of the cell surface pool of CD4 occurs within the LDTI microdomains of T cells. Localization of CD4 in LDTI microdomains was confirmed by immunoelectron microscopy. PMA-induced disruption of the CD4-Lck complex was rapid (within 5 min), and this disruption occurred within LDTI microdomains. Because PMA is an activator of protein kinase C (PKC), we next evaluated the possible roles of different PKC isoforms in this process. Our results indicate that PMA induced the rapid translocation of cytosolic PKCs to LDTI microdomains. We identified PKCalpha as the major isoform involved in this translocation event. Taken together, our results support the hypothesis that LDTI microdomains represent a functionally important plasma membrane compartment in T cells.  相似文献   

18.
In this report we demonstrated that cellular prion protein is strictly associated with gangliosides in microdomains of neural and lymphocytic cells. We preliminarily investigated the protein distribution on the plasma membrane of human neuroblastoma cells, revealing the presence of large clusters. In order to evaluate its possible role in tyrosine signaling pathway triggered by GEM, we analyzed PrPc presence in microdomains and its association with gangliosides, using cholera toxin as a marker of GEM in neuroblastoma cells and anti-GM3 MoAb for identification of GEM in lymphoblastoid cells. In neuroblastoma cells scanning confocal microscopical analysis revealed a consistent colocalization between PrPc and GM1 despite an uneven distribution of both on the cell surface, indicating the existence of PrPc-enriched microdomains. In lymphoblastoid T cells PrPc molecules were mainly, but not exclusively, colocalized with GM3. In addition, PrPc was present in the Triton-insoluble fractions, corresponding to GEM of cell plasma membrane. Additional evidence for a specific PrPc-GM3 interaction in these cells was derived from the results of TLC analysis, showing that prion protein was associated with GM3 in PrPc immunoprecipitates. The physical association of PrPc with ganglioside GM3 within microdomains of lymphocytic cells strongly suggests a role for PrPc-GM3 complex as a structural component of the multimolecular signaling complex involved in T cell activation and other dynamic lymphocytic plasma membrane functions.  相似文献   

19.
GM3, a major ganglioside of T lymphocytes, promotes human immunodeficiency virus type 1 (HIV-1) entry via interactions with HIV-1 receptors and the viral envelope glycoprotein (Env). Increased GM3 levels in T lymphocytes and the appearance of anti-GM3 antibodies in AIDS patients have been reported earlier. In this study, we investigated the effect of GM3 regulation on HIV-1 entry by utilizing a mouse cell line (B16F10), which expresses exceptionally high levels of GM3. Strikingly, B16 cells bearing CD4, CXCR4, and/or CCR5 were highly resistant to CD4-dependent HIV-1 Env-mediated membrane fusion. In contrast, these targets supported membrane fusion mediated by CD4-requiring HIV-2, SIV, and CD4-independent HIV-1 Envs. Coreceptor function was not impaired by GM3 overexpression as indicated by Ca(2+) fluxes mediated by the CXCR4 ligand SDF-1alpha and the CCR5 ligand MIP-1beta. Reduction in GM3 levels of B16 target cells resulted in a significant recovery of CD4-dependent HIV-1 Env-mediated fusion. We propose that GM3 in the plasma membrane blocks HIV-1 Env-mediated fusion by interfering with the lateral association of HIV-1 receptors. Our findings offer a novel mechanism of interplay between membrane lipids and receptors by which host cells may escape viral infections.  相似文献   

20.
Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4°C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号