首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ding H  Tsai C  Zhou F  Buchy P  Deubel V  Zhou P 《PloS one》2011,6(3):e17821

Background

The spread of highly pathogenic avian influenza (HPAI) H5N1 virus in human remains a global health concern. Heterosubtypic antibody response between seasonal influenza vaccine and potential pandemic influenza virus has important implications for public health. Previous studies by Corti et al. and by Gioia et al. demonstrate that heterosubtypic neutralizing antibodies against the highly pathogenic H5N1 virus can be elicited with a seasonal influenza vaccine in humans. However, whether such response offers immune protection against highly pathogenic H5N1 virus remained to be determined.

Methodology/Principal Findings

In this study, using a sensitive influenza HA (hemagglutinin) and NA (neuraminidase) pseudotype-based neutralization (PN) assay we first confirmed that low levels of heterosubtypic neutralizing antibody response against H5N1 virus were indeed elicited with seasonal influenza vaccine in humans. We then immunized mice with the seasonal influenza vaccine and challenged them with lethal doses of highly pathogenic H5N1 virus. As controls, we immunized mice with homosubtypic H5N1 virus like particles (VLP) or PBS and challenged them with the same H5N1 virus. Here we show that low levels of heterosubtypic neutralizing antibody response were elicited with seasonal influenza vaccine in mice, which were significantly higher than those in PBS control. Among them 2 out of 27 whose immune sera exhibited similar levels of neutralizing antibody response as VLP controls actually survived from highly pathogenic H5N1 virus challenge.

Conclusions/Significance

Therefore, we conclude that low levels of heterosubtypic neutralizing antibody response are indeed elicited with seasonal influenza vaccine in humans and mice and at certain levels such response offers immune protection against severity of H5N1 virus infection.  相似文献   

2.

Background

Current influenza vaccines based on the hemagglutinin protein are strain specific and do not provide good protection against drifted viruses or emergence of new pandemic strains. An influenza vaccine that can confer cross-protection against antigenically different influenza A strains is highly desirable for improving public health.

Methodology/Principal Findings

To develop a cross protective vaccine, we generated influenza virus-like particles containing the highly conserved M2 protein in a membrane-anchored form (M2 VLPs), and investigated their immunogenicity and breadth of cross protection. Immunization of mice with M2 VLPs induced anti-M2 antibodies binding to virions of various strains, M2 specific T cell responses, and conferred long-lasting cross protection against heterologous and heterosubtypic influenza viruses. M2 immune sera were found to play an important role in providing cross protection against heterosubtypic virus and an antigenically distinct 2009 pandemic H1N1 virus, and depletion of dendritic and macrophage cells abolished this cross protection, providing new insight into cross-protective immune mechanisms.

Conclusions/Significance

These results suggest that presenting M2 on VLPs in a membrane-anchored form is a promising approach for developing broadly cross protective influenza vaccines.  相似文献   

3.

Background

Pandemic influenza poses a serious threat to global health and the world economy. While vaccines are currently under development, passive immunization could offer an alternative strategy to prevent and treat influenza virus infection. Attempts to develop monoclonal antibodies (mAbs) have been made. However, passive immunization based on mAbs may require a cocktail of mAbs with broader specificity in order to provide full protection since mAbs are generally specific for single epitopes. Chicken immunoglobulins (IgY) found in egg yolk have been used mainly for treatment of infectious diseases of the gastrointestinal tract. Because the recent epidemic of highly pathogenic avian influenza virus (HPAIV) strain H5N1 has resulted in serious economic losses to the poultry industry, many countries including Vietnam have introduced mass vaccination of poultry with H5N1 virus vaccines. We reasoned that IgY from consumable eggs available in supermarkets in Vietnam could provide protection against infections with HPAIV H5N1.

Methods and Findings

We found that H5N1-specific IgY that are prepared from eggs available in supermarkets in Vietnam by a rapid and simple water dilution method cross-protect against infections with HPAIV H5N1 and related H5N2 strains in mice. When administered intranasally before or after lethal infection, the IgY prevent the infection or significantly reduce viral replication resulting in complete recovery from the disease, respectively. We further generated H1N1 virus-specific IgY by immunization of hens with inactivated H1N1 A/PR/8/34 as a model virus for the current pandemic H1N1/09 and found that such H1N1-specific IgY protect mice from lethal influenza virus infection.

Conclusions

The findings suggest that readily available H5N1-specific IgY offer an enormous source of valuable biological material to combat a potential H5N1 pandemic. In addition, our study provides a proof-of-concept for the approach using virus-specific IgY as affordable, safe, and effective alternative for the control of influenza outbreaks, including the current H1N1 pandemic.  相似文献   

4.

Background

The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector) was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes.

Methods

BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains.

Results

The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7). Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012.

Conclusions

The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation.  相似文献   

5.

Background

The urgent medical need for innovative approaches to control influenza is emphasized by the widespread resistance of circulating subtype H1N1 viruses to the leading antiviral drug oseltamivir, the pandemic threat posed by the occurrences of human infections with highly pathogenic avian H5N1 viruses, and indeed the evolving swine-origin H1N1 influenza pandemic. A recently discovered class of human monoclonal antibodies with the ability to neutralize a broad spectrum of influenza viruses (including H1, H2, H5, H6 and H9 subtypes) has the potential to prevent and treat influenza in humans. Here we report the latest efficacy data for a representative antibody of this novel class.

Methodology/Principal Findings

We evaluated the prophylactic and therapeutic efficacy of the human monoclonal antibody CR6261 against lethal challenge with the highly pathogenic avian H5N1 virus in ferrets, the optimal model of human influenza infection. Survival rates, clinically relevant disease signs such as changes in body weight and temperature, virus replication in lungs and upper respiratory tract, as well as macro- and microscopic pathology were investigated. Prophylactic administration of 30 and 10 mg/kg CR6261 prior to viral challenge completely prevented mortality, weight loss and reduced the amount of infectious virus in the lungs by more than 99.9%, abolished shedding of virus in pharyngeal secretions and largely prevented H5N1-induced lung pathology. When administered therapeutically 1 day after challenge, 30 mg/kg CR6261 prevented death in all animals and blunted disease, as evidenced by decreased weight loss and temperature rise, reduced lung viral loads and shedding, and less lung damage.

Conclusions/Significance

These data demonstrate the prophylactic and therapeutic efficacy of this new class of human monoclonal antibodies in a highly stringent and clinically relevant animal model of influenza and justify clinical development of this approach as intervention for both seasonal and pandemic influenza.  相似文献   

6.

Background

Cross-immunity between seasonal and pandemic A/H1N1 influenza viruses remains uncertain. In particular, the extent that previous infection or vaccination by seasonal A/H1N1 viruses can elicit protective immunity against pandemic A/H1N1 is unclear.

Methodology/Principal Findings

Neutralizing titers against seasonal A/H1N1 (A/Brisbane/59/2007) and against pandemic A/H1N1 (A/California/04/2009) were measured using an HIV-1-based pseudovirus neutralization assay. Using this highly sensitive assay, we found that a large fraction of subjects who had never been exposed to pandemic A/H1N1 express high levels of pandemic A/H1N1 neutralizing titers. A significant correlation was seen between neutralization of pandemic A/H1N1 and neutralization of a standard seasonal A/H1N1 strain. Significantly higher pandemic A/H1N1 neutralizing titers were measured in subjects who had received vaccination against seasonal influenza in 2008–2009. Higher pandemic neutralizing titers were also measured in subjects over 60 years of age.

Conclusions/Significance

Our findings reveal that the extent of protective cross-immunity between seasonal and pandemic A/H1N1 influenza viruses may be more important than previously estimated. This cross-immunity could provide a possible explanation of the relatively mild profile of the recent influenza pandemic.  相似文献   

7.

Background

Recurrent outbreaks of highly pathogenic H5N1 avian influenza virus pose a threat of eventually causing a pandemic. Early vaccination of the population would be the single most effective measure for the control of an emerging influenza pandemic.

Methodology/Principal Findings

Influenza virus-like particles (VLPs) produced in insect cell-culture substrates do not depend on the availability of fertile eggs for vaccine manufacturing. We produced VLPs containing influenza A/Viet Nam1203/04 (H5N1) hemagglutinin, neuraminidase, and matrix proteins, and investigated their preclinical immunogenicity and protective efficacy. Mice immunized intranasally with H5N1 VLPs developed high levels of H5N1 specific antibodies and were 100% protected against a high dose of homologous H5N1 virus infection at 30 weeks after immunization. Protection is likely to be correlated with humoral and cellular immunologic memory at systemic and mucosal sites as evidenced by rapid anamnestic responses to re-stimulation with viral antigen in vivo and in vitro.

Conclusions/Significance

These results provide support for clinical evaluation of H5N1 VLP vaccination as a public health intervention to mitigate a possible pandemic of H5N1 influenza.  相似文献   

8.

Background

Vaccination is a cost-effective counter-measure to the threat of seasonal or pandemic outbreaks of influenza. To address the need for improved influenza vaccines and alternatives to egg-based manufacturing, we have engineered an influenza virus-like particle (VLP) as a new generation of non-egg or non-mammalian cell culture-based candidate vaccine.

Methodology/Principal Findings

We generated from a baculovirus expression system using insect cells, a non-infectious recombinant VLP vaccine from both influenza A H5N1 clade 1 and clade 2 isolates with pandemic potential. VLPs were administered to mice in either a one-dose or two-dose regimen and the immune responses were compared to those induced by recombinant hemagglutinin (rHA). Both humoral and cellular responses were analyzed. Mice vaccinated with VLPs were protected against challenge with lethal reassortant viruses expressing the H5N1 HA and NA, regardless if the H5N1 clade was homologous or heterologous to the vaccine. However, rHA-vaccinated mice showed considerable weight loss and death following challenge with the heterovariant clade virus. Protection against death induced by VLPs was independent of the pre-challenge HAI titer or cell-mediated responses to HA or M1 since vaccinated mice, with low to undetectable cross-clade HAI antibodies or cellular responses to influenza antigens, were still protected from a lethal viral challenge. However, an apparent association rate of antibody binding to HA correlated with protection and was enhanced using VLPs, particularly when delivered intranasally, compared to rHA vaccines.

Conclusion/Significance

This is the first report describing the use of an H5N1 VLP vaccine created from a clade 2 isolate. The results show that a non-replicating virus-like particle is effective at eliciting a broadened, cross-clade protective immune response to proteins from emerging H5N1 influenza isolates giving rise to a potential pandemic influenza vaccine candidate for humans that can be stockpiled for use in the event of an outbreak of H5N1 influenza.  相似文献   

9.

Background

Influenza A virus displays strong reassortment characteristics, which enable it to achieve adaptation in human infection. Surveying the reassortment and virulence of novel viruses is important in the prevention and control of an influenza pandemic. Meanwhile, studying the mechanism of reassortment may accelerate the development of anti-influenza strategies.

Methodology/Principal Findings

The hemagglutinin (HA) and neuraminidase (NA) matching patterns of two pandemic H1N1 viruses (the 1918 and current 2009 strains) and a highly pathogenic avian influenza A virus (H5N1) were studied using a pseudotyped particle (pp) system. Our data showed that four of the six chimeric HA/NA combinations could produce infectious pps, and that some of the chimeric pps had greater infectivity than did their ancestors, raising the possibility of reassortment among these viruses. The NA of H5N1 (A/Anhui/1/2005) could hardly reassort with the HAs of the two H1N1 viruses. Many biological characteristics of HA and NA, including infectivity, hemagglutinating ability, and NA activity, are dependent on their matching pattern.

Conclusions/Significance

Our data suggest the existence of an interaction between HA and NA, and the HA NA matching pattern is critical for valid viral reassortment.  相似文献   

10.

Introduction

Recent studies have demonstrated that inactivated seasonal influenza vaccines (IIV) may elicit production of heterosubtypic antibodies, which can neutralize avian H5N1 virus in a small proportion of subjects. We hypothesized that prime boost regimens of live and inactivated trivalent seasonal influenza vaccines (LAIV and IIV) would enhance production of heterosubtypic immunity and provide evidence of cross-protection against other influenza viruses.

Methods

In an open-label study, 26 adult volunteers were randomized to receive one of four vaccine regimens containing two doses of 2009-10 seasonal influenza vaccines administered 8 (±1) weeks apart: 2 doses of LAIV; 2 doses of IIV; LAIV then IIV; IIV then LAIV. Humoral immunity assays for avian H5N1, 2009 pandemic H1N1 (pH1N1), and seasonal vaccine strains were performed on blood collected pre-vaccine and 2 and 4 weeks later. The percentage of cytokine-producing T-cells was compared with baseline 14 days after each dose.

Results

Subjects receiving IIV had prompt serological responses to vaccine strains. Two subjects receiving heterologous prime boost regimens had enhanced haemagglutination inhibition (HI) and neutralization (NT) titres against pH1N1, and one subject against avian H5N1; all three had pre-existing cross-reactive antibodies detected at baseline. Significantly elevated titres to H5N1 and pH1N1 by neuraminidase inhibition (NI) assay were observed following LAIV-IIV administration. Both vaccines elicited cross-reactive CD4+ T-cell responses to nucleoprotein of avian H5N1 and pH1N1. All regimens were safe and well tolerated.

Conclusion

Neither homologous nor heterologous prime boost immunization enhanced serum HI and NT titres to 2009 pH1N1 or avian H5N1 compared to single dose vaccine. However heterologous prime-boost vaccination did lead to in vitro evidence of cross-reactivity by NI; the significance of this finding is unclear. These data support the strategy of administering single dose trivalent seasonal influenza vaccine at the outset of an influenza pandemic while a specific vaccine is being developed.

Trial Registration

ClinicalTrials.gov NCT01044095  相似文献   

11.

Background

Given that there is a possibility of a human H5N1 pandemic and the fact that the recent H5N1 viruses are resistant to the anti-viral drugs, newer strategies for effective therapy are warranted. Previous studies show that single mAbs in immune prophylaxis can be protective against H5N1 infection. But a single mAb may not be effective in neutralization of a broad range of different strains of H5N1 and control of potential neutralization escape mutants.

Methods/Principal Findings

We selected two mAbs which recognized different epitopes on the hemagglutinin molecule. These two mAbs could each neutralize in vitro escape mutants to the other and in combination could effectively neutralize viruses from clades 0, 1, 2.1, 2.2, 2.3, 4, 7 and 8 of influenza A H5N1 viruses. This combination of chimeric mAbs when administered passively, pre or post challenge with 10 MLD50 (50% mouse lethal dose) HPAI H5N1 influenza A viruses could protect 100% of the mice from two different clades of viruses (clades 1 and 2.1). We also tested the efficacy of a single dose of the combination of mAbs versus two doses. Two doses of the combination therapy not only affected early clearance of the virus from the lung but could completely prevent lung pathology of the H5N1 infected mice. No escape variants were detected after therapy.

Conclusions/Significance

Our studies provide proof of concept that the synergistic action of two or more mAbs in combination is required for preventing the generation of escape mutants and also to enhance the therapeutic efficacy of passive therapy against H5N1 infection. Combination therapy may allow for a lower dose of antibody to be administered for passive therapy of influenza infection and hence can be made available at reduced economic costs during an outbreak.  相似文献   

12.

Background

The recent emergence of a novel pandemic influenza A(H1N1) strain in humans exemplifies the rapid and unpredictable nature of influenza virus evolution and the need for effective therapeutics and vaccines to control such outbreaks. However, resistance to antivirals can be a formidable problem as evidenced by the currently widespread oseltamivir- and adamantane-resistant seasonal influenza A viruses (IFV). Additional antiviral approaches with novel mechanisms of action are needed to combat novel and resistant influenza strains. DAS181 (Fludase™) is a sialidase fusion protein in early clinical development with in vitro and in vivo preclinical activity against a variety of seasonal influenza strains and highly pathogenic avian influenza strains (A/H5N1). Here, we use in vitro, ex vivo, and in vivo models to evaluate the activity of DAS181 against several pandemic influenza A(H1N1) viruses.

Methods and Findings

The activity of DAS181 against several pandemic influenza A(H1N1) virus isolates was examined in MDCK cells, differentiated primary human respiratory tract culture, ex-vivo human bronchi tissue and mice. DAS181 efficiently inhibited viral replication in each of these models and against all tested pandemic influenza A(H1N1) strains. DAS181 treatment also protected mice from pandemic influenza A(H1N1)-induced pathogenesis. Furthermore, DAS181 antiviral activity against pandemic influenza A(H1N1) strains was comparable to that observed against seasonal influenza virus including the H274Y oseltamivir-resistant influenza virus.

Conclusions

The sialidase fusion protein DAS181 exhibits potent inhibitory activity against pandemic influenza A(H1N1) viruses. As inhibition was also observed with oseltamivir-resistant IFV (H274Y), DAS181 may be active against the antigenically novel pandemic influenza A(H1N1) virus should it acquire the H274Y mutation. Based on these and previous results demonstrating DAS181 broad-spectrum anti-IFV activity, DAS181 represents a potential therapeutic agent for prevention and treatment of infections by both emerging and seasonal strains of IFV.  相似文献   

13.

Background

The influence of prior seasonal influenza vaccination on the antibody response produced by natural infection or vaccination is not well understood.

Methods

We compared the profiles of antibody responses of 32 naturally infected subjects and 98 subjects vaccinated with a 2009 influenza A(H1N1) monovalent MF59-adjuvanted vaccine (Focetria®, Novartis), with and without a history of seasonal influenza vaccination. Antibodies were measured by hemagglutination inhibition (HI) assay for influenza A(H1N1)pdm09 and by protein microarray (PA) using the HA1 subunit for seven recent and historic H1, H2 and H3 influenza viruses, and three avian influenza viruses. Serum samples for the infection group were taken at the moment of collection of the diagnostic sample, 10 days and 30 days after onset of influenza symptoms. For the vaccination group, samples were drawn at baseline, 3 weeks after the first vaccination and 5 weeks after the second vaccination.

Results

We showed that subjects with a history of seasonal vaccination generally exhibited higher baseline titers for the various HA1 antigens than subjects without a seasonal vaccination history. Infection and pandemic influenza vaccination responses in persons with a history of seasonal vaccination were skewed towards historic antigens.

Conclusions

Seasonal vaccination is of significant influence on the antibody response to subsequent infection and vaccination, and further research is needed to understand the effect of annual vaccination on protective immunity.  相似文献   

14.

Background

In early 2009, a novel influenza A(H1N1) virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.

Methods/Results

The first case of human infection with A(H1N1)pdm09 in Pakistan was detected on 18th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31st August 2010). The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.

Conclusions

Influenza A(H1N1)pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.  相似文献   

15.
16.

Background

Limited data are available on disease characteristics and outcomes of children with 2009 pandemic influenza A(H1N1) virus infection (pandemic H1N1 influenza) who have required hospital admission.

Methods

We reviewed the charts of 58 children with pandemic H1N1 influenza admitted to a large pediatric hospital in Ontario, Canada, between May 8 and July 22, 2009. We compared risk factors, severity indicators and outcomes of these children with those of 200 children admitted with seasonal influenza A during the previous 5 years (2004/05 to 2008/09).

Results

Children with pandemic H1N1 influenza were significantly older than those with seasonal influenza (median age 6.4 years v. 3.3 years). Forty-six (79%) of the children with pandemic H1N1 influenza had underlying medical conditions; of the other 12 who were previously healthy, 42% were under 2 years of age. Children admitted with pandemic H1N1 influenza were significantly more likely to have asthma than those with seasonal influenza (22% v. 6%). Two children had poorly controlled asthma, and 6 used inhaled medications only intermittently. The median length of stay in hospital was 4 days in both groups of children. Similar proportions of children required admission to the intensive care unit (21% of those with pandemic H1N1 influenza and 14% of those with seasonal influenza) and mechanical ventilation (12% and 10% respectively). None of the children admitted with pandemic H1N1 influenza died, as compared with 1 (0.4%) of those admitted with seasonal influenza.

Interpretation

Pandemic H1N1 influenza did not appear to cause more severe disease than seasonal influenza A. Asthma appears to be a significant risk factor for severe disease, with no clear relation to severity of asthma. This finding should influence strategies for vaccination and pre-emptive antiviral therapy.Influenza causes significant morbidity and mortality in childhood.1 Infants, young children and people 65 years of age and older account for the highest rates of influenza-related hospital admission.2 Earlier case series of 2009 pandemic influenza A(H1N1) virus infection (pandemic H1N1 influenza) reported small numbers of children3,4 or did not present data on children separately.5 A recently published series that included 122 children confirmed typical influenza-like presentation, reported a high prevalence of underlying medical conditions (60%, including asthma in 29%) and described the need for intensive care in 20% and mechanical ventilation in 10%.6 A previous comparison of children with pandemic H1N1 influenza and those in previous years with seasonal influenza included only children considered to have died of influenza.7In this article, we present our experience with children admitted to hospital with pandemic H1N1 influenza. Our primary goal was to describe the demographic characteristics, clinical features and markers of severity of illness of these children. Our secondary goal was to identify risk factors for severe disease or poor outcome by comparing these children with those who had been admitted in previous years with seasonal influenza.  相似文献   

17.

Background

The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, “universal” vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd) expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.

Methodology/Principal Findings

In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.

Conclusion/Significance

Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.  相似文献   

18.

Background

In April 2009, a novel triple-reassortant swine influenza A H1N1 virus (“A/H1N1pdm”; also known as SOIV) was detected and spread globally as the first influenza pandemic of the 21st century. Sequencing has since been conducted at an unprecedented rate globally in order to monitor the diversification of this emergent virus and to track mutations that may affect virus behavior.

Methodology/Principal Findings

By Sanger sequencing, we determined consensus whole-genome sequences for A/H1N1pdm viruses sampled nationwide in Canada over 33 weeks during the 2009 first and second pandemic waves. A total of 235 virus genomes sampled from unique subjects were analyzed, providing insight into the temporal and spatial trajectory of A/H1N1pdm lineages within Canada. Three clades (2, 3, and 7) were identifiable within the first two weeks of A/H1N1pdm appearance, with clades 5 and 6 appearing thereafter; further diversification was not apparent. Only two viral sites displayed evidence of adaptive evolution, located in hemagglutinin (HA) corresponding to D222 in the HA receptor-binding site, and to E374 at HA2-subunit position 47. Among the Canadian sampled viruses, we observed notable genetic diversity (1.47×10−3 amino acid substitutions per site) in the gene encoding PB1, particularly within the viral genomic RNA (vRNA)-binding domain (residues 493–757). This genome data set supports the conclusion that A/H1N1pdm is evolving but not excessively relative to other H1N1 influenza A viruses. Entropy analysis was used to investigate whether any mutated A/H1N1pdm protein residues were associated with infection severity; however no virus genotypes were observed to trend with infection severity. One virus that harboured heterozygote coding mutations, including PB2 D567D/G, was attributed to a severe and potentially mixed infection; yet the functional significance of this PB2 mutation remains unknown.

Conclusions/Significance

These findings contribute to enhanced understanding of Influenza A/H1N1pdm viral dynamics.  相似文献   

19.

Background

During the 2009 influenza pandemic, individuals over the age of 60 had the lowest incidence of infection with approximately 25% of these people having pre-existing, cross-reactive antibodies to novel 2009 H1N1 influenza isolates. It was proposed that older people had pre-existing antibodies induced by previous 1918-like virus infection(s) that cross-reacted to novel H1N1 strains.

Methodology/Principal Findings

Using antisera collected from a cohort of individuals collected before the second wave of novel H1N1 infections, only a minority of individuals with 1918 influenza specific antibodies also demonstrated hemagglutination-inhibition activity against the novel H1N1 influenza. In this study, we examined human antisera collected from individuals that ranged between the ages of 1 month and 90 years to determine the profile of seropositive influenza immunity to viruses representing H1N1 antigenic eras over the past 100 years. Even though HAI titers to novel 2009 H1N1 and the 1918 H1N1 influenza viruses were positively associated, the association was far from perfect, particularly for the older and younger age groups.

Conclusions/Significance

Therefore, there may be a complex set of immune responses that are retained in people infected with seasonal H1N1 that can contribute to the reduced rates of H1N1 influenza infection in older populations.  相似文献   

20.

Background

The A/H1N1/2009 influenza pandemic made evident the need for faster and higher-yield methods for the production of influenza vaccines. Platforms based on virus culture in mammalian or insect cells are currently under investigation. Alternatively, expression of fragments of the hemagglutinin (HA) protein in prokaryotic systems can potentially be the most efficacious strategy for the manufacture of large quantities of influenza vaccine in a short period of time. Despite experimental evidence on the immunogenic potential of HA protein constructs expressed in bacteria, it is still generally accepted that glycosylation should be a requirement for vaccine efficacy.

Methodology/Principal Findings

We expressed the globular HA receptor binding domain, referred to here as HA63–286-RBD, of the influenza A/H1N1/2009 virus in Escherichia coli using a simple, robust and scalable process. The recombinant protein was refolded and purified from the insoluble fraction of the cellular lysate as a single species. Recombinant HA63–286-RBD appears to be properly folded, as shown by analytical ultracentrifugation and bio-recognition assays. It binds specifically to serum antibodies from influenza A/H1N1/2009 patients and was found to be immunogenic, to be capable of triggering the production of neutralizing antibodies, and to have protective activity in the ferret model.

Conclusions/Significance

Projections based on our production/purification data indicate that this strategy could yield up to half a billion doses of vaccine per month in a medium-scale pharmaceutical production facility equipped for bacterial culture. Also, our findings demonstrate that glycosylation is not a mandatory requirement for influenza vaccine efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号