首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RATIONALE: Treatment of glioblastoma (GBM) remains challenging due in part to its histologic intratumoral heterogeneity that contributes to its overall poor treatment response. Our goal was to evaluate a voxel-based biomarker, the functional diffusion map (fDM), as an imaging biomarker to detect heterogeneity of tumor response in a radiation dose escalation protocol using a genetically engineered murine GBM model. EXPERIMENTAL DESIGN: Twenty-four genetically engineered murine GBM models [Ink4a-Arf-/-/Ptenloxp/loxp/Ntv-a RCAS/PDGF(+)/Cre(+)] were randomized in four treatment groups (n = 6 per group) consisting of daily doses of 0, 1, 2, and 4 Gy delivered for 5 days. Contrast-enhanced T1-weighted and diffusion-weighted magnetic resonance imaging (MRI) scans were acquired for tumor delineation and quantification of apparent diffusion coefficient (ADC) maps, respectively. MRI experiments were performed daily for a week and every 2 days thereafter. For each animal, the area under the curve (AUC) of the percentage change of the ADC (AUCADC) and that of the increase in fDM values (AUCfDM+) were determined within the first 5 days following therapy initiation. RESULTS: Animal survival increased with increasing radiation dose. Treatment induced a dose-dependent increase in tumor ADC values. The strongest correlation between survival and ADC measurements was observed using the AUCfDM+ metric (R2 = 0.88). CONCLUSION: This study showed that the efficacy of a voxel-based imaging biomarker (fDM) was able to detect spatially varying changes in tumors, which were determined to be a more sensitive predictor of overall response versus whole-volume tumor measurements (AUCADC). Finally, fDM provided for visualization of treatment-associated spatial heterogeneity within the tumor.  相似文献   

2.
The parametric response map (PRM) was evaluated as an early surrogate biomarker for monitoring treatment-induced tissue alterations in patients with head and neck squamous cell carcinoma (HNSCC). Diffusion-weighted magnetic resonance imaging (DW-MRI) was performed on 15 patients with HNSCC at baseline and 3 weeks after treatment initiation of a nonsurgical organ preservation therapy (NSOPT) using concurrent radiation and chemotherapy. PRM was applied on serial apparent diffusion coefficient (ADC) maps that were spatially aligned using a deformable image registration algorithm to measure the tumor volume exhibiting significant changes in ADC (PRMADC). Pretherapy and midtherapy ADC maps, quantified from the DWIs, were analyzed by monitoring the percent change in whole-tumor mean ADC and the PRM metric. The prognostic values of percentage change in tumor volume and mean ADC and PRMADC as a treatment response biomarker were assessed by correlating with tumor control at 6 months. Pixel-wise differences as part of PRMADC analysis revealed regions where water mobility increased. Analysis of the tumor ADC histograms also showed increases in mean ADC as early as 3 weeks into therapy in patients with a favorable outcome. Nevertheless, the percentage change in mean ADC was found to not correlate with tumor control at 6 months. In contrast, significant differences in PRMADC and percentage change in tumor volume were observed between patients with pathologically different outcomes. Observations from this study have found that diffusion MRI, when assessed by PRMADC, has the potential to provide both prognostic and spatial information during NSOPT of head and neck cancer.  相似文献   

3.
It remains difficult to distinguish tumor recurrence from radiation necrosis after brain tumor therapy. Here we show that these lesions can be distinguished using the amide proton transfer (APT) magnetic resonance imaging (MRI) signals of endogenous cellular proteins and peptides as an imaging biomarker. When comparing two models of orthotopic glioma (SF188/V+ glioma and 9L gliosarcoma) with a model of radiation necrosis in rats, we could clearly differentiate viable glioma (hyperintense) from radiation necrosis (hypointense to isointense) by APT MRI. When we irradiated rats with U87MG gliomas, the APT signals in the irradiated tumors had decreased substantially by 3 d and 6 d after radiation. The amide protons that can be detected by APT provide a unique and noninvasive MRI biomarker for distinguishing viable malignancy from radiation necrosis and predicting tumor response to therapy.  相似文献   

4.
The effectiveness of the radiosensitizer gemcitabine (GEM) was evaluated in a mouse glioma along with the imaging biomarker diffusion-weighted magnetic resonance imaging (DW-MRI) for early detection of treatment effects. A genetically engineered murine GBM model [Ink4a-Arf(-/-) Pten(loxP/loxP)/Ntv-a RCAS/PDGF(+)/Cre(+)] was treated with gemcitabine (GEM), temozolomide (TMZ) +/- ionizing radiation (IR). Therapeutic efficacy was quantified by contrast-enhanced MRI and DW-MRI for growth rate and tumor cellularity, respectively. Mice treated with GEM, TMZ and radiation showed a significant reduction in growth rates as early as three days post-treatment initiation. Both combination treatments (GEM/IR and TMZ/IR) resulted in improved survival over single therapies. Tumor diffusion values increased prior to detectable changes in tumor volume growth rates following administration of therapies. Concomitant GEM/IR and TMZ/IR was active and well tolerated in this GBM model and similarly prolonged median survival of tumor bearing mice. DW-MRI provided early changes to radiosensitization treatment warranting evaluation of this imaging biomarker in clinical trials.  相似文献   

5.
Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD) along with an optical reporter gene (luciferase). Following intratumoral injection of the vector into orthotopic 9 L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC) gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging for assessment of gene expression and therapeutic efficacy.  相似文献   

6.
Metastatic prostate cancer continues to be the second leading cause of cancer death in American men with an estimated 28,660 deaths in 2008. Recently, monocyte chemoattractant protein‐1 (MCP‐1, CCL2) has been identified as an important factor in the regulation of prostate metastasis. CCL2, shown to attract macrophages to the tumor site, has a direct promotional effect on tumor cell proliferation, migration, and survival. Previous studies have shown that anti‐CCL2 antibodies given in combination with docetaxel were able to induce tumor regression in a pre‐clinical prostate cancer model. A limitation for evaluating new treatments for metastatic prostate cancer to bone is the inability of imaging to objectively assess response to treatment. Diffusion‐weighted MRI (DW‐MRI) assesses response to anticancer therapies by quantifying the random (i.e., Brownian) motion of water molecules within the tumor mass, thus identifying cells undergoing apoptosis. We sought to measure the treatment response of prostate cancer in an osseous site to docetaxel, an anti‐CCL2 agent, and combination treatments using DW‐MRI. Measurements of tumor apparent diffusion coefficient (ADC) values were accomplished over time during a 14‐day treatment period and compared to response as measured by bioluminescence imaging and survival studies. The diffusion data provided early predictive evidence of the most effective therapy, with survival data results correlating with the DW‐MRI findings. DW‐MRI is under active investigation in the pre‐clinical and clinical settings to provide a sensitive and quantifiable means for early assessment of cancer treatment outcome. J. Cell. Biochem. 107: 58–64, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
In an effort to improve the therapeutic outcome for squamous cell cancer of the head and neck, we have used the enzyme cytosine deaminase (CD) and the prodrug 5-fluorocytosine (5-FC) as a means to deliver the chemotherapeutic agent 5-fluorouracil (5-FU) in a tumor-specific manner and have evaluated the use of this treatment in combination with external-beam radiation. Infection of SCCVII cells in culture with a CD-expressing retrovirus and treatment with 5-FC was cytotoxic depending on the time of treatment and dose of 5-FC. An orthotopic model of squamous cell cancer of the head and neck was used in vivo to study the CD/5-FC system both alone and with concurrent radiation due to the radiosensitizing properties that 5-FU generates in situ. Treated mice were imaged using magnetic resonance imaging (MRI), and their survival was evaluated. Neither 5-FU nor radiation either alone or combined provided a survival advantage. In contrast, 5-FC treatment prolonged survival and decreased tumor burden compared to control animals, but the tumors recurred after the treatment ceased. Finally, combined treatment with concurrent administration of 5-FC and radiation resulted in a synergistic decrease in tumor growth and enhanced survival over treatment with 5-FC or radiation alone.  相似文献   

8.
MRI是目前直肠癌诊断、分期的首选影像学方法。在判断肿瘤对邻近器官、结构的浸润程度上具有明显优势,尤其是对有较高复发风险的低位肿瘤。常规MRI尤其是高分辨MRI能够清晰显示直肠相关解剖,结合扩散加权成像(Diffusion weighted imaging,DWI)通过确定肿瘤边界,直肠系膜有无受侵,淋巴结及远处转移情况,可以准确有效的进行术前诊断、分期;DWI有助于鉴别辅助治疗后失活与存活组织、筛选出辅助治疗有效的患者,在评估治疗后疗效、提示患者预后方面发挥重要作用,也为临床制定治疗方案提供依据。同时也发现准确进行淋巴结分期、鉴别复发仍然存在困难,需要在以后进一步探讨,提高评估的准确性。本文就近年来MRI在直肠癌术前评价、术后疗效评估、复发监测及表观弥散系数(Apparent diffusion coefficient,ADC)的应用做一综述。  相似文献   

9.
MRI是目前直肠癌诊断、分期的首选影像学方法。在判断肿瘤对邻近器官、结构的浸润程度上具有明显优势,尤其是对有较高复发风险的低位肿瘤。常规MRI尤其是高分辨MRI能够清晰显示直肠相关解剖,结合扩散加权成像(Diffusion weighted imaging,DWI)通过确定肿瘤边界,直肠系膜有无受侵,淋巴结及远处转移情况,可以准确有效的进行术前诊断、分期;DWI有助于鉴别辅助治疗后失活与存活组织、筛选出辅助治疗有效的患者,在评估治疗后疗效、提示患者预后方面发挥重要作用,也为临床制定治疗方案提供依据。同时也发现准确进行淋巴结分期、鉴别复发仍然存在困难,需要在以后进一步探讨,提高评估的准确性。本文就近年来MRI在直肠癌术前评价、术后疗效评估、复发监测及表观弥散系数(Apparent diffusion coefficient,ADC)的应用做一综述。  相似文献   

10.
Preclinical studies of cranial radiation therapy (RT) using animal brain tumor models have been hampered by technical limitations in the delivery of clinically relevant RT. We established a bioimageable mouse model of glioblastoma multiforme (GBM) and an image-guided radiation delivery system that facilitated precise tumor localization and treatment and which closely resembled clinical RT. Our novel radiation system makes use of magnetic resonance imaging (MRI) and bioluminescent imaging (BLI) to define tumor volumes, computed tomographic (CT) imaging for accurate treatment planning, a novel mouse immobilization system, and precise treatments delivered with the Small Animal Radiation Research Platform. We demonstrated that, in vivo, BLI correlated well with MRI for defining tumor volumes. Our novel restraint system enhanced setup reproducibility and precision, was atraumatic, and minimized artifacts on CT imaging used for treatment planning. We confirmed precise radiation delivery through immunofluorescent analysis of the phosphorylation of histone H2AX in irradiated brains and brain tumors. Assays with an intravenous near-infrared fluorescent probe confirmed that radiation of orthografts increased disruption of the tumor blood-brain barrier (BBB). This integrated model system, which facilitated delivery of precise, reproducible, stereotactic cranial RT in mice and confirmed RT's resultant histologic and BBB changes, may aid future brain tumor research.  相似文献   

11.
This study evaluated the combined effect of Low Dose Fractionated Radiation (LDFRT) and Taxotere (TXT) therapy on the growth of SCCHN (squamous cell carcinoma of head and neck; SQ-20B, a p53 mutant SCCHN cell line) tumors in a nude mouse model to exploit the increased hyper radiation sensitivity (HRS) phenomenon present in G2M cell cycle phase when induced by low doses of radiation that was demonstrated in in-vitro settings. Seventy-eight animals were randomized into one control group and 5 treatment groups (treatments were administered weekly for six weeks). Tumor regression was observed in all the groups, however, tumor regression was not significant in 2 Gy or TXT or 2 Gy plus TXT treated groups when compared to control group. The tumor regression was significant in both the LDFRT group (p  相似文献   

12.
Prediction of response to therapy has been identified as an important tool to obtain a more customized treatment. It allows the selection of those patients who will benefit most from a particular therapy and prevents the exposure of patients to toxic, noneffective regimens. Recent technical advances and the introduction of novel markers in anatomical and functional imaging have created exciting opportunities for in vivo visualization and quantification of cell death. This review will focus on in vivo apoptosis imaging as a predictive marker for tumor response after radiation.  相似文献   

13.
Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500–750 mm3) and measurements of tumor pO2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO2<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.  相似文献   

14.
OBJECTIVE: To evaluate the value of anatomic and volumetric functional magnetic resonance imaging (MRI) in early assessment of response to trans-arterial chemoembolization (TACE) in hypovascular liver metastases. METHODS: This retrospective study included 52 metastatic lesions (42 targeted and 10 non-targeted) in 17 patients who underwent MRI before and early after TACE. Two reviewers reported response by anatomic criteria (Response Evaluation Criteria in Solid Tumor [RECIST], modified RECIST [mRECIST], and European Association for the Study of Liver Disease [EASL]) and functional criteria (volumetric apparent diffusion coefficient and contrast enhancement). Treatment endpoint was RECIST at 6 months. A 2-sample paired t test was used to compare the mean changes after intra-arterial therapy. P < .05 was considered statistically significant. RESULTS: Reduction in mRECIST and EASL at 1 month was significant in the whole cohort as well as in responders by RECIST at 6 months, and the changes fulfilled partial response criteria for both metrics in responders. Responders also had significant changes in volumetric apparent diffusion coefficient (P = .01 and P = .03) and contrast enhancement (P < .0001 and P < .0001) at 1 month for both readers, respectively. CONCLUSION: At 1 month post treatment, responders did not fulfill RECIST criteria but fulfilled mRECIST and EASL criteria. In addition, volumetric contrast-enhanced and diffusion-weighted MRI may be helpful in evaluating early treatment response after TACE in hypovascular liver metastases in patients who have failed to respond to initial chemotherapy.  相似文献   

15.
This study evaluated the combined effect of Low Dose Fractionated Radiation (LDFRT) and Taxotere (TXT) therapy on the growth of SCCHN (squamous cell carcinoma of head and neck; SQ-20B, a p53 mutant SCCHN cell line) tumors in a nude mouse model to exploit the increased hyper radiation sensitivity (HRS) phenomenon present in G(2)/M cell cycle phase when induced by low doses of radiation that was demonstrated in in vitro settings. Seventy-eight animals were randomized into one control group and 5 treatment groups (treatments were administered weekly for six weeks). Tumor regression was observed in all the groups, however, tumor regression was not significant in 2 Gy or TXT or 2 Gy plus TXT treated groups when compared to control group. The tumor regression was significant in both the LDFRT group (p < 0.0043) and LDFRT + TXT group (p < 0.0006) when compared to other groups. A significantly prolonged tumor growth delay was observed in LDFRT group (p < 0.0081). Importantly, in combination of TXT and LDFRT, no tumor regrowth was observed in 12 out of 13 mice since LDFRT + TXT treatment caused a sustained regression of tumors for 9 weeks. Molecular analysis of resected tumor specimens demonstrated that Bax levels were elevated with concomitant increase in cytochrome c release to the cytosol of the treatment Group VI. These findings strongly suggest that LDFRT can be used in combination with TXT to potentiate the effects of drug on tumor regression through an apoptotic mode of death. Furthermore, the G(2)/M cell cycle arrest by TXT appears to be an important component of the enhanced apoptotic effect of TXT + LDFRT combined treatment.  相似文献   

16.
《Translational oncology》2020,13(3):100737
Glioblastoma (GBM), the most common primary brain tumor found in adults, is extremely aggressive. These high-grade gliomas, which are very diffuse, highly vascular, and invasive, undergo unregulated vascular angiogenesis. Despite available treatments, the median survival for patients is dismal. ELTD1 (EGF, latrophilin, and 7 transmembrane domain containing protein 1) is an angiogenic biomarker highly expressed in human high-grade gliomas. Recent studies have demonstrated that the blood-brain barrier, as well as the blood-tumor barrier, is not equally disrupted in GBM patients. This study therefore aimed to optimize an antibody treatment against ELTD1 using a smaller scFv fragment of a monoclonal antibody that binds against the external region of ELTD1 in a G55 glioma xenograft glioma preclinical model. Morphological magnetic resonance imaging (MRI) was used to determine tumor volumes and quantify perfusion rates. We also assessed percent survival following tumor postdetection. Tumor tissue was also assessed to confirm and quantify the presence of the ELTD1 scFv molecular targeted MRI probe, as well as microvessel density and Notch1 levels. In addition, we used molecular-targeted MRI to localize our antibodies in vivo. This approach showed that our scFv antibody attached-molecular MRI probe was effective in targeting and localizing diffuse tumor regions. Through this analysis, we determined that our anti-ELTD1 scFv antibody treatments were successful in increasing survival, decreasing tumor volumes, and normalizing vascular perfusion and Notch1 levels within tumor regions. This study demonstrates that our scFv fragment antibody against ELTD1 may be useful and potential antiangiogenic treatments against GBM.  相似文献   

17.
Diffusion MRI: a new strategy for assessment of cancer therapeutic efficacy   总被引:1,自引:0,他引:1  
The use of anatomical imaging in clinical oncology practice traditionally relies on comparison of patient scans acquired before and following completion of therapeutic intervention. Therapeutic success is typically determined from inspection of gross anatomical images to assess changes in tumor size. Imaging could provide significant additional insight into therapeutic impact if a specific parameter or combination of parameters could be identified which reflect tissue changes at the cellular or physiologic level. This would provide an early indicator or treatment response/outcome in an individual patient before completion of therapy. Moreover, response of a tumor to therapeutic intervention may be heterogeneous. The use of imaging could assist in delineating therapeutic-induced spatial heterogeneity within a tumor mass by providing information related to specific regions that are resistant or responsive to treatment. Largely untapped potential resides in exploratory methods such as diffusion MRI, which is a nonvolumetric intravoxel measure of tumor response based upon water molecular mobility. Alterations in water mobility reflect changes in tissue structure at the cellular level. While the clinical utility of diffusion MRI for oncologic practice is still under active investigation, this overview on the use of diffusion MRI for the evaluation of brain tumors will serve to introduce how this approach may be applied in the future for the management of patients with solid tumors.  相似文献   

18.
MRI biomarkers of tumor edema, vascular permeability, blood volume, and average vessel caliber are increasingly being employed to assess the efficacy of tumor therapies. However, the dependence of these biomarkers on a number of physiological factors can compromise their sensitivity and complicate the assessment of therapeutic efficacy. Here we examine the response of these MRI tumor biomarkers to cediranib, a potent vascular endothelial growth factor receptor (VEGFR) inhibitor, in an orthotopic mouse glioma model. A significant increase in the tumor volume and relative vessel caliber index (rVCI) and a slight decrease in the water apparent diffusion coefficient (ADC) were observed for both control and cediranib treated animals. This contrasts with a clinical study that observed a significant decrease in tumor rVCI, ADC and volume with cediranib therapy. While the lack of a difference between control and cediranib treated animals in these biomarker responses might suggest that cediranib has no therapeutic benefit, cediranib treated mice had a significantly increased survival. The increased survival benefit of cediranib treated animals is consistent with the significant decrease observed for cediranib treated animals in the relative cerebral blood volume (rCBV), relative microvascular blood volume (rMBV), transverse relaxation time (T2), blood vessel permeability (K(trans)), and extravascular-extracellular space (ν(e)). The differential response of pre-clinical and clinical tumors to cediranib therapy, along with the lack of a positive response for some biomarkers, indicates the importance of evaluating the whole spectrum of different tumor biomarkers to properly assess the therapeutic response and identify and interpret the therapy-induced changes in the tumor physiology.  相似文献   

19.
Epidermal growth factor receptor (EGFR) is over-expressed in nearly all cases of squamous cell carcinoma of the head and neck (SCCHN), and is an important driver of disease progression. EGFR targeted therapies have demonstrated clinical benefit for SCCHN treatment. In this report, we investigated the pre-clinical efficacy of Dacomitinib (PF-00299804), an irreversible pan-ErbB inhibitor, both alone and in combination with ionizing radiation (IR), a primary curative modality for SCCHN. One normal oral epithelial (NOE) and three SCCHN (FaDu, UT-SCC-8, UT-SCC-42a) cell lines were used to conduct cell viability, clonogenic survival, cell cycle, and immunoblotting assays in vitro, using increasing doses of Dacomitinib (10–500 nM), both with and without IR (2–4 Gy). The FaDu xenograft model was utilized for tumor growth delay assays in vivo, and immunohistochemical analyses were conducted on extracted tumors. A dose-dependent reduction in cell viability and clonogenic survival after Dacomitinib treatment was observed in all three SCCHN models. Treatment led to a significant reduction in EGFR signalling, with a subsequent decrease in phosphorylation of downstream targets such as ERK, AKT, and mTOR. In vivo, Dacomitinib treatment delayed tumor growth, while decreasing phospho-EGFR and Ki-67 immunoexpression. These effects were further enhanced when combined with IR, both in vitro and in vivo. The preclinical data support the further evaluations of Dacomitinib combined with IR for the future management of patients with SCCHN.  相似文献   

20.
Cancer drug development generally performs in vivo evaluation of treatment effects that have traditionally relied on detection of morphologic changes. The emergence of new targeted therapies, which may not result in gross morphologic changes, has spurred investigation into more specific imaging methods to quantify response, such as targeted fluorescent probes and bioluminescent cells. The present study investigated tissue response to docetaxel or zoledronic acid (ZA) in a mouse model of bony metastasis. Intratibial implantations of breast cancer cells (MDA-MB-231) were monitored throughout this study using several modalities: molecular resonance imaging (MRI) tumor volume and apparent diffusion coefficient (ADC), micro-computed tomography (µCT) bone volume, bioluminescence imaging (BLI) reporting cancer cell apoptosis, and fluorescence using Osteosense 800 and CatK 680-FAST. Docetaxel treatment resulted in tumor cell kill reflected by ADC and BLI increases and tumor volume reduction, with delayed bone recovery seen in µCT prefaced by increased osteoblastic activity (Osteosense 800). In contrast, the ZA treatment group produced similar values in MRI, BLI, and Osteosense 800 fluorescence imaging readouts when compared to controls. However, µCT bone volume increased significantly by the first week post-treatment and the CatK 680-FAST signal was slightly diminished by 4 weeks following ZA treatment. Multimodality imaging provides a more comprehensive tool for new drug evaluation and efficacy screening through identification of morphology as well as function and apoptotic signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号