首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The DNA single-strand break repair (SSBR) protein XRCC1 is required for genetic stability and for embryonic viability. XRCC1 possesses two BRCA1 carboxyl-terminal (BRCT) protein interaction domains, denoted BRCT I and II. BRCT II is required for SSBR during G(1) but is dispensable for this process during S/G(2) and consequently for cell survival following DNA alkylation. Little is known about BRCT I, but this domain has attracted considerable interest because it is the site of a genetic polymorphism that epidemiological studies have associated with altered cancer risk. We report that the BRCT I domain comprises the evolutionarily conserved core of XRCC1 and that this domain is required for efficient SSBR during both G(1) and S/G(2) cell cycle phases and for cell survival following treatment with methyl methanesulfonate. However, the naturally occurring human polymorphism in BRCT I supported XRCC1-dependent SSBR and cell survival after DNA alkylation equally well. We conclude that while the BRCT I domain is critical for XRCC1 to maintain genetic integrity and cell survival, the polymorphism does not impact significantly on this function and therefore is unlikely to impact significantly on susceptibility to cancer.  相似文献   

2.
Proteins involved in DNA repair, or its coordination with DNA replication and mitosis through cell cycle checkpoints, are vital in the concerted cellular response to DNA damage that maintains the integrity of the genome. The "BRCT" domain (BRCA1 carboxy terminal) was noted as a putative protein-protein interaction motif in the breast cancer suppressor gene, BRCA1, and subsequently identified in over 50 proteins involved in DNA repair, recombination, or cell cycle control. The heterodimer of the DNA repair proteins, XRCC1 and DNA ligase III, was the first example of a functional interaction via BRCT modules. The only three-dimensional crystal structure of a BRCT domain was solved for this region of XRCC1. Key amino acid residues mediating the interaction with DNA ligase III were identified here by targeted mutagenesis of the XRCC1 BRCT domain. The consequences of these mutations on protein folding were assessed. A structural model of the DNA ligase III BRCT domain was constructed and similarly tested by mutation of corresponding residues required for the interaction with XRCC1. These data identify the XRCC1-DNA ligase III heterodimer interface and provide the first demonstration of the surface contacts coordinating a functional BRCT-BRCT protein interaction.  相似文献   

3.
Protein interactions critical to DNA repair and cell cycle control systems are often coordinated by modules that belong to a superfamily of structurally conserved BRCT domains. Because the mechanisms of BRCT interactions and their significance are not well understood, we sought to define the affinity and specificity of those BRCT modules that orchestrate base excision repair and single-strand break repair. Common to these pathways is the essential XRCC1 DNA repair protein, which interacts with at least nine other proteins and DNA. Here, we characterized the interactions of four purified BRCT domains, two from XRCC1 and their two partners from DNA ligase IIIalpha and poly(ADP-ribosyl) polymerase 1. A monoclonal antibody was selected that recognizes the ligase IIIalpha BRCT domain, but not the other BRCT domains, and was used to capture the relevant ligase IIIalpha BRCT complex. To examine the assembly states of isolated BRCT domains and pairwise domain complexes, we used size-exclusion chromatography coupled with on-line light scattering. This analysis indicated that isolated BRCT domains form homo-oligomers and that the BRCT complex between the C-terminal XRCC1 domain and the ligase IIIalpha domain is a heterotetramer with 2:2 stoichiometry. Using affinity capture and surface plasmon resonance methods, we determined that specific heteromeric interactions with high nanomolar dissociation constants occur between pairs of cognate BRCT domains. A structural model for a XRCC1 x DNA ligase IIIalpha heterotetramer is proposed as a core base excision repair complex, which constitutes a scaffold for higher order complexes to which other repair proteins and DNA are brought into proximity.  相似文献   

4.
The two BRCT domains (BRCT1 and BRCT2) of XRCC1 mediate a network of protein–protein interactions with several key factors of the DNA single-strand breaks (SSBs) and base damage repair pathways. BRCT1 is required for the immediate poly(ADP–ribose)-dependent recruitment of XRCC1 to DNA breaks and is essential for survival after DNA damage. To better understand the biological role of XRCC1 in the processing of DNA ends, a search for the BRCT1 domain-associated proteins was performed by mass spectrometry of GST-BRCT1 pulled-down proteins from HeLa cell extracts. Here, we report that the double-strand break (DSB) repair heterotrimeric complex DNA-PK interacts with the BRCT1 domain of XRCC1 and phosphorylates this domain at serine 371 after ionizing irradiation. This caused XRCC1 dimer dissociation. The XRCC1 R399Q variant allele did not affect this phosphorylation. We also show that XRCC1 strongly stimulates the phosphorylation of p53-Ser15 by DNA-PK. The pseudo phosphorylated S371D mutant was a much weaker stimulator of DNA-PK activity whereas the non-phosphorylable mutant S371L endowed with a DNA-PK stimulating capacity failed to fully rescue the DSB repair defect of XRCC1-deficient EM9 rodent cells. The functional association between XRCC1 and DNA-PK in response to IR provides the first evidence for their involvement in a common DSB repair pathway.  相似文献   

5.
The BRCT domain (BRCA1 C-terminus), first identified in the breast cancer suppressor protein BRCA1, is an evolutionarily conserved protein-protein interaction region of approximately 95 amino acids found in a large number of proteins involved in DNA repair, recombination and cell cycle control. Here we describe the first three-dimensional structure and fold of a BRCT domain determined by X-ray crystallography at 3.2 A resolution. The structure has been obtained from the C-terminal region of the human DNA repair protein XRCC1, and comprises a four-stranded parallel beta-sheet surrounded by three alpha-helices, which form an autonomously folded domain. The compact XRCC1 structure explains the observed sequence homology between different BRCT motifs and provides a framework for modelling other BRCT domains. Furthermore, the established structure of an XRCC1 BRCT homodimer suggests potential protein-protein interaction sites for the complementary BRCT domain in DNA ligase III, since these two domains form a stable heterodimeric complex. Based on the XRCC1 BRCT structure, we have constructed a model for the C-terminal BRCT domain of BRCA1, which frequently is mutated in familial breast and ovarian cancer. The model allows insights into the effects of such mutations on the fold of the BRCT domain.  相似文献   

6.
XRCC1 is a scaffold protein that interacts with several DNA repair proteins and plays a critical role in DNA base excision repair (BER). XRCC1 protein is in a tight complex with DNA ligase IIIα (Lig III) and this complex is involved in the ligation step of both BER and repair of DNA single strand breaks. The majority of XRCC1 has previously been demonstrated to exist in a phosphorylated form and cells containing mutant XRCC1, that is unable to be phosphorylated, display a reduced rate of single strand break repair. Here, in an unbiased assay, we demonstrate that the cytoplasmic form of the casein kinase 2 (CK2) protein is the major protein kinase activity involved in phosphorylation of XRCC1 in human cell extracts and that XRCC1 phosphorylation is required for XRCC1-Lig III complex stability. We demonstrate that XRCC1-Lig III complex containing mutant XRCC1, in which CK2 phosphorylation sites have been mutated, is unstable. We also find that a knockdown of CK2 by siRNA results in both reduced XRCC1 phosphorylation and stability, which also leads to a reduced amount of Lig III and accumulation of DNA strand breaks. We therefore propose that CK2 plays an important role in DNA repair by contributing to the stability of XRCC1-Lig III complex.  相似文献   

7.
DNA ligase IV (LigIV) is critical for nonhomologous end joining (NHEJ), the major DNA double-strand break (DSB) repair pathway in human cells, and LigIV?activity is regulated by XRCC4 and XLF (XRCC4-like factor) interactions. Here, we employ small angle X-ray scattering (SAXS) data to characterize three-dimensional arrangements in solution for full-length XRCC4, XRCC4 in complex with LigIV?tandem BRCT domains and XLF, plus the XRCC4·XLF·BRCT2 complex. XRCC4 forms tetramers mediated through a head-to-head interface, and the XRCC4 C-terminal coiled-coil region folds back on itself to support this interaction. The interaction between XLF and XRCC4 is also mediated via head-to-head interactions. In the XLF·XRCC4·BRCT complex, alternating repeating units of XLF and XRCC4·BRCT place the BRCT domain on one side of the filament. Collective results identify XRCC4 and XLF filaments suitable to align DNA molecules and function to facilitate LigIV end joining required for DSB repair in?vivo.  相似文献   

8.
The C-terminal regions of several DNA repair and cell cycle checkpoint proteins are homologous to the breast-cancer-associated BRCA-1 protein C-terminal region. These regions, known as BRCT domains, have been found to mediate important protein-protein interactions. We produced the BRCT domain of DNA ligase IIIalpha (L3[86]) for biophysical and structural characterization. A glutathione S-transferase (GST) fusion with the L3[86] domain (residues 837-922 of ligase IIIalpha) was expressed in Escherichia coli and purified by glutathione affinity chromatography. The GST fusion protein was removed by thrombin digestion and further purification steps. Using this method, (15)N-labeled and (13)C/(15)N-double-labeled L3[86] proteins were prepared to enable a full determination of structure and dynamics using heteronuclear NMR spectroscopy. To obtain evidence of binding activity to the distal BRCT of the repair protein XRCC1 (X1BRCTb), as well as to provide insight into the interaction between these two BRCT binding partners, the corresponding BRCT heterocomplexes were also prepared and studied. Changes in the secondary structures (amount of helix and sheet components) of the two constituents were not observed upon complex formation. However, the melting temperature of the complex was significantly higher relative to the values obtained for the L3[86] or X1BRCTb proteins alone. This increased thermostability imparted by the interaction between the two BRCT domains may explain why cells require XRCC1 to maintain ligase IIIalpha activity.  相似文献   

9.
Jin R  Sun Y  Qi X  Zhang H  Zhang Y  Li N  Ding W  Chen D 《DNA Repair》2011,10(9):926-933
The X-ray repair cross complementing group 1 (XRCC1) protein is involved in DNA base excision repair and its expression varies during the cell cycle. Although studies have demonstrated that rapid XRCC1-dependent single-strand break repair (SSBR) takes place specifically during S/G(2) phases, it remains unclear how it is regulated during the cell cycle. We found that XRCC1 is a direct regulatory target of E2F1 and further investigated the role of XRCC1 in DNA repair during the cell cycle. Saos2 primary osteosarcoma cells stably transfected with inducible E2F1-wt or mutant E2F1-132E were treated with hydroxurea (HU) for 36h and were subsequently withdrawn HU for 2-24h to test whether cell-cycle-dependent DNA SSBR requires E2F1-mediated upregulation of XRCC1. We found that SSBR activity, as determined using a qPCR-base method, was correlated with E2F1 levels at different phases of the cell cycle. XRCC1-positive (AA8) and negative (EM9) CHO cells were used to demonstrate that the alterations in SSBR were mediated by XRCC1. The results indicate that E2F1-mediated regulation of XRCC1 is required for cell-cycle-dependent SSBR predominantly in G(1)/S phases. Our observations have provided new mechanistic insight for understanding the role of E2F1 in the maintenance of genomic stability and cell survival during the cell cycle. The regulation of XRCC1 by E2F1 during cell-cycle-dependent SSBR might be an important aspect for practical consideration for resolving the problem of drug resistance in tumor chemotherapies.  相似文献   

10.
G Herrmann  T Lindahl  P Sch?r 《The EMBO journal》1998,17(14):4188-4198
Saccharomyces cerevisiae DNA ligase IV (LIG4) has been shown previously to be involved in non-homologous DNA end joining and meiosis. The homologous mammalian DNA ligase IV interacts with XRCC4, a protein implicated in V(D)J recombination and double-strand break repair. Here, we report the discovery of LIF1, a S.cerevisiae protein that strongly interacts with the C-terminal BRCT domain of yeast LIG4. LIG4 and LIF1 apparently occur as a heterodimer in vivo. LIF1 shares limited sequence homology with mammalian XRCC4. Disruption of the LIF1 gene abolishes the capacity of cells to recircularize transformed linearized plasmids correctly by non-homologous DNA end joining. Loss of LIF1 is also associated with conditional hypersensitivity of cells to ionizing irradiation and with reduced sporulation efficiency. Thus, with respect to their phenotype, lif1 strains are similar to the previously described lig4 mutants. One function of LIF1 is the stabilization of the LIG4 enzyme. The finding of a XRCC4 homologue in S.cerevisiae now allows for mutational analyses of structure-function relationships in XRCC4-like proteins to define their role in DNA double-strand break repair.  相似文献   

11.
DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.Key words: DNA repair, nervous system, neurodegeneration, DNA ligase III, DNA damage, XRCC1, mitochondria, mtDNA  相似文献   

12.
The molecular role of poly (ADP-ribose) polymerase-1 in DNA repair is unclear. Here, we show that the single-strand break repair protein XRCC1 is rapidly assembled into discrete nuclear foci after oxidative DNA damage at sites of poly (ADP-ribose) synthesis. Poly (ADP-ribose) synthesis peaks during a 10 min treatment with H2O2 and the appearance of XRCC1 foci peaks shortly afterwards. Both sites of poly (ADP-ribose) and XRCC1 foci decrease to background levels during subsequent incubation in drug-free medium, consistent with the rapidity of the single-strand break repair process. The formation of XRCC1 foci at sites of poly (ADP-ribose) was greatly reduced by mutation of the XRCC1 BRCT I domain that physically interacts with PARP-1. Moreover, we failed to detect XRCC1 foci in Adprt1–/– MEFs after treatment with H2O2. These data demonstrate that PARP-1 is required for the assembly or stability of XRCC1 nuclear foci after oxidative DNA damage and suggest that the formation of these foci is mediated via interaction with poly (ADP-ribose). These results support a model in which the rapid activation of PARP-1 at sites of DNA strand breakage facilitates DNA repair by recruiting the molecular scaffold protein, XRCC1.  相似文献   

13.
Short-patch repair of DNA single-strand breaks and gaps (SSB) is coordinated by XRCC1, a scaffold protein that recruits the DNA polymerase and DNA ligase required for filling and sealing the damaged strand. XRCC1 can also recruit end-processing enzymes, such as PNK (polynucleotide kinase 3′-phosphatase), Aprataxin and APLF (aprataxin/PNK-like factor), which ensure the availability of a free 3′-hydroxyl on one side of the gap, and a 5′-phosphate group on the other, for the polymerase and ligase reactions respectively. PNK binds to a phosphorylated segment of XRCC1 (between its two C-terminal BRCT domains) via its Forkhead-associated (FHA) domain. We show here, contrary to previous studies, that the FHA domain of PNK binds specifically, and with high affinity to a multiply phosphorylated motif in XRCC1 containing a pSer-pThr dipeptide, and forms a 2:1 PNK:XRCC1 complex. The high-resolution crystal structure of a PNK–FHA–XRCC1 phosphopeptide complex reveals the basis for this unusual bis-phosphopeptide recognition, which is probably a common feature of the known XRCC1-associating end-processing enzymes.  相似文献   

14.
DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.  相似文献   

15.
The XRCC1–DNA ligase IIIα complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homologous recombination. Here, we combined biophysical approaches to gain insights into the shape and conformational flexibility of the XL as well as XRCC1 and DNA ligase IIIα (LigIIIα) alone. Structurally-guided mutational analyses based on the crystal structure of the human BRCT–BRCT heterodimer identified the network of salt bridges that together with the N-terminal extension of the XRCC1 C-terminal BRCT domain constitute the XL molecular interface. Coupling size exclusion chromatography with small angle X-ray scattering and multiangle light scattering (SEC-SAXS–MALS), we determined that the XL is more compact than either XRCC1 or LigIIIα, both of which form transient homodimers and are highly disordered. The reduced disorder and flexibility allowed us to build models of XL particles visualized by negative stain electron microscopy that predict close spatial organization between the LigIIIα catalytic core and both BRCT domains of XRCC1. Together our results identify an atypical BRCT–BRCT interaction as the stable nucleating core of the XL that links the flexible nick sensing and catalytic domains of LigIIIα to other protein partners of the flexible XRCC1 scaffold.  相似文献   

16.
In Saccharomyces cerevisiae, destabilizing telomeres, via inactivation of telomeric repeat binding factor Cdc13, induces a cell cycle checkpoint that arrests cells at the metaphase to anaphase transition—much like the response to an unrepaired DNA double strand break (DSB). Throughout the cell cycle, the multi-domain adaptor protein Rad9 is required for the activation of checkpoint effector kinase Rad53 in response to DSBs and is similarly necessary for checkpoint signaling in response to telomere uncapping. Rad53 activation in G1 and S phase depends on Rad9 association with modified chromatin adjacent to DSBs, which is mediated by Tudor domains binding histone H3 di-methylated at K79 and BRCT domains to histone H2A phosphorylated at S129. Nonetheless, Rad9 Tudor or BRCT mutants can initiate a checkpoint response to DNA damage in nocodazole-treated cells. Mutations affecting di-methylation of H3 K79, or its recognition by Rad9 enhance 5′ strand resection upon telomere uncapping, and potentially implicate Rad9 chromatin binding in the checkpoint response to telomere uncapping. Indeed, we report that Rad9 binds to sub-telomeric chromatin, upon telomere uncapping, up to 10 kb from the telomere. Rad9 binding occurred within 30 min after inactivating Cdc13, preceding Rad53 phosphorylation. In turn, Rad9 Tudor and BRCT domain mutations blocked chromatin binding and led to attenuated checkpoint signaling as evidenced by decreased Rad53 phosphorylation and impaired cell cycle arrest. Our work identifies a role for Rad9 chromatin association, during mitosis, in the DNA damage checkpoint response to telomere uncapping, suggesting that chromatin binding may be an initiating event for checkpoints throughout the cell cycle.  相似文献   

17.
XRCC1 protein is required for DNA single-strand break repair and genetic stability but its biochemical role is unknown. Here, we report that XRCC1 interacts with human polynucleotide kinase in addition to its established interactions with DNA polymerase-beta and DNA ligase III. Moreover, these four proteins are coassociated in multiprotein complexes in human cell extract and together they repair single-strand breaks typical of those induced by reactive oxygen species and ionizing radiation. Strikingly, XRCC1 stimulates the DNA kinase and DNA phosphatase activities of polynucleotide kinase at damaged DNA termini and thereby accelerates the overall repair reaction. These data identify a novel pathway for mammalian single-strand break repair and demonstrate a concerted role for XRCC1 and PNK in the initial step of processing damaged DNA ends.  相似文献   

18.
Repair of a uracil-guanine base pair in DNA has been reconstituted with the recombinant human proteins uracil-DNA glycosylase, apurinic/apyrimidinic endonuclease, DNA polymerase beta and DNA ligase III. The XRCC1 protein, which is known to bind DNA ligase III, is not absolutely required for the reaction but suppresses strand displacement by DNA polymerase beta, allowing for more efficient ligation after filling of a single nucleotide patch. We show that XRCC1 interacts directly with DNA polymerase beta using far Western blotting, affinity precipitation and yeast two-hybrid analyses. In addition, a complex formed between DNA polymerase beta and a double-stranded oligonucleotide containing an incised abasic site was supershifted by XRCC1 in a gel retardation assay. The region of interaction with DNA polymerase beta is located within residues 84-183 in the N-terminal half of the XRCC1 protein, whereas the C-terminal region of XRCC1 is involved in binding DNA ligase III. These data indicate that XRCC1, which has no known catalytic activity, might serve as a scaffold protein during base excision-repair. DNA strand displacement and excessive gap filling during DNA repair were observed in cell-free extracts of an XRCC1-deficient mutant cell line, in agreement with the results from the reconstituted system.  相似文献   

19.
Ataxia-oculomotor apraxia 1 (AOA1) is an autosomal recessive neurodegenerative disease that is reminiscent of ataxia-telangiectasia (A-T). AOA1 is caused by mutations in the gene encoding aprataxin, a protein whose physiological function is currently unknown. We report here that, in contrast to A-T, AOA1 cell lines exhibit neither radioresistant DNA synthesis nor a reduced ability to phosphorylate downstream targets of ATM following DNA damage, suggesting that AOA1 lacks the cell cycle checkpoint defects that are characteristic of A-T. In addition, AOA1 primary fibroblasts exhibit only mild sensitivity to ionising radiation, hydrogen peroxide, and methyl methanesulphonate (MMS). Strikingly, however, aprataxin physically interacts in vitro and in vivo with the DNA strand break repair proteins XRCC1 and XRCC4. Aprataxin possesses a divergent forkhead associated (FHA) domain that closely resembles the FHA domain present in polynucleotide kinase, and appears to mediate the interactions with CK2-phosphorylated XRCC1 and XRCC4 through this domain. Aprataxin is therefore physically associated with both the DNA single-strand and double-strand break repair machinery, raising the possibility that AOA1 is a novel DNA damage response-defective disease.  相似文献   

20.
The repair of DNA single-strand breaks in mammalian cells is mediated by poly(ADP-ribose) polymerase 1 (PARP-1), DNA ligase IIIalpha, and XRCC1. Since these proteins are not found in lower eukaryotes, this DNA repair pathway plays a unique role in maintaining genome stability in more complex organisms. XRCC1 not only forms a stable complex with DNA ligase IIIalpha but also interacts with several other DNA repair factors. Here we have used affinity chromatography to identify proteins that associate with DNA ligase III. PARP-1 binds directly to an N-terminal region of DNA ligase III immediately adjacent to its zinc finger. In further studies, we have shown that DNA ligase III also binds directly to poly(ADP-ribose) and preferentially associates with poly(ADP-ribosyl)ated PARP-1 in vitro and in vivo. Our biochemical studies have revealed that the zinc finger of DNA ligase III increases DNA joining in the presence of either poly(ADP-ribosyl)ated PARP-1 or poly(ADP-ribose). This provides a mechanism for the recruitment of the DNA ligase IIIalpha-XRCC1 complex to in vivo DNA single-strand breaks and suggests that the zinc finger of DNA ligase III enables this complex and associated repair factors to locate the strand break in the presence of the negatively charged poly(ADP-ribose) polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号