首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous models of biofilms growing in a microbial fuel cell (MFC) have primarily focused on modeling a single growth mechanism: growth via a conductive biofilm matrix, or growth utilizing diffusible electron shuttles or mediators. In this work, we implement both flavors of models in order to explore the competition for space and nutrients in a MFC biofilm populated by both species types. We find that the optimal growth conditions are for bacteria that utilize conductive EPS provided a minimal energy used to create the EPS matrix. Mediator-utilizing bacteria do have favorable niche regions, most notably close to the anode and where exposed to the bulk inflow, where oxidized mediator is readily available.  相似文献   

2.
Conduction-based modeling of the biofilm anode of a microbial fuel cell   总被引:1,自引:0,他引:1  
The biofilm of a microbial fuel cell (MFC) experiences biofilm-related (growth and mass transport) and electrochemical (electron conduction and charger-transfer) processes. We developed a dynamic, one-dimensional, multi-species model for the biofilm in three steps. First, we formulated the biofilm on the anode as a "biofilm anode" with the following two properties: (1) The biofilm has a conductive solid matrix characterized by the biofilm conductivity (kappa(bio)). (2) The biofilm matrix accepts electrons from biofilm bacteria and conducts the electrons to the anode. Second, we derived the Nernst-Monod expression to describe the rate of electron-donor (ED) oxidation. Third, we linked these components using the principles of mass balance and Ohm's law. We then solved the model to study dual limitation in biofilm by the ED concentration and local potential. Our model illustrates that kappa(bio) strongly influences the ED and current fluxes, the type of limitation in biofilm, and the biomass distribution. A larger kappa(bio) increases the ED and current fluxes, and, consequently, the ED mass-transfer resistance becomes significant. A significant gradient in ED concentration, local potential, or both can develop in the biofilm anode, and the biomass actively respires only where ED concentration and local potential are high. When kappa(bio) is relatively large (i.e., > or =10(-3) mS cm(-1)), active biomass can persist up to tens of micrometers away from the anode. Increases in biofilm thickness and accumulation of inert biomass accentuate dual limitation and reduce the current density. These limitations can be alleviated with increases in the specific detachment rate and biofilm density.  相似文献   

3.
A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Electrochemical impedance spectroscopy (EIS) was used to study the behavior of a microbial fuel cell (MFC) during initial biofilm growth in an acetate-fed, two-chamber MFC system with ferricyanide in the cathode. EIS experiments were performed both on the full cell (between cathode and anode) as well as on individual electrodes. The Nyquist plots of the EIS data were fitted with an equivalent electrical circuit to estimate the contributions of various intrinsic resistances to the overall internal MFC impedance. During initial development of the anode biofilm, the anode polarization resistance was found to decrease by over 70% at open circuit and by over 45% at 27 microA/cm(2), and a simultaneous increase in power density by about 120% was observed. The exchange current density for the bio-electrochemical reaction on the anode was estimated to be in the range of 40-60 nA/cm(2) for an immature biofilm after 5 days of closed circuit operation, which increased to around 182 nA/cm(2) after more than 3 weeks of operation and stable performance in an identical parallel system. The polarization resistance of the anode was 30-40 times higher than that of the ferricyanide cathode for the conditions tested, even with an established biofilm. For a two-chamber MFC system with a Nafion 117 membrane and an inter-electrode spacing of 15 cm, the membrane and electrolyte solution dominate the ohmic resistance and contribute to over 95% of the MFC internal impedance. Detailed EIS analyses provide new insights into the dominant kinetic resistance of the anode bio-electrochemical reaction and its influence on the overall power output of the MFC system, even in the high internal resistance system used in this study. These results suggest that new strategies to address this kinetic constraint of the anode bio-electrochemical reactions are needed to complement the reduction of ohmic resistance in modern designs.  相似文献   

5.
Microbial fuel cells (MFCs) have been proposed as an alternative energy resource for the conversion of organic compounds to electricity. In an MFC, microorganisms such as Geobacter sulfurreducens form an anode‐associated biofilm that can completely oxidize organic matter (electron donor) to carbon dioxide with direct electron transfer to the anode (electron acceptor). Mathematical models are useful in analyzing biofilm processes; however, existing models rely on Nernst–Monod type expressions, and evaluate extracellular processes separated from the intracellular metabolism of the microorganism. Thus, models that combine both extracellular and intracellular components, while addressing spatial heterogeneity, are essential for improved representation of biofilm processes. The goal of this work is to develop a model that integrates genome‐scale metabolic models with the model of biofilm environment. This integrated model shows the variations of electrical current production and biofilm thickness under the presence/absence of NH4 in the bulk solution, and under varying maintenance energy demands. Further, sensitivity analysis suggested that conductivity is not limiting electrical current generation and that increasing cell density can lead to enhanced current generation. In addition, the modeling results also highlight instances such as the transformation into respiring cells, where the mechanism of electrical current generation during biofilm development is not yet clearly understood.  相似文献   

6.
A microbial fuel cell (MFC) is a relatively new type of fixed film bioreactor for wastewater treatment, and the most effective methods for inoculation are not well understood. Various techniques to enrich electrochemically active bacteria on an electrode were therefore studied using anaerobic sewage sludge in a two-chambered MFC. With a porous carbon paper anode electrode, 8 mW/m2 of power was generated within 50 h with a Coulombic efficiency (CE) of 40%. When an iron oxide-coated electrode was used, the power and the CE reached 30 mW/m2 and 80%, respectively. A methanogen inhibitor (2-bromoethanesulfonate) increased the CE to 70%. Bacteria in sludge were enriched by serial transfer using a ferric iron medium, but when this enrichment was used in a MFC the power was lower (2 mW/m2) than that obtained with the original inoculum. By applying biofilm scraped from the anode of a working MFC to a new anode electrode, the maximum power was increased to 40 mW/m2. When a second anode was introduced into an operating MFC the acclimation time was not reduced and the total power did not increase. These results suggest that these active inoculating techniques could increase the effectiveness of enrichment, and that start up is most successful when the biofilm is harvested from the anode of an existing MFC and applied to the new anode.  相似文献   

7.
The anode biofilm in a microbial fuel cell (MFC) is composed of diverse populations of bacteria, many of whose capacities for electricity generation are unknown. To identify functional populations in these exoelectrogenic communities, a culture-dependent approach based on dilution to extinction was combined with culture-independent community analysis. We analyzed the diversity and dynamics of microbial communities in single-chamber air-cathode MFCs with different anode surfaces using denaturing gradient gel electrophoresis based on the 16S rRNA gene. Phylogenetic analyses showed that the bacteria enriched in all reactors belonged primarily to five phylogenetic groups: Firmicutes, Actinobacteria, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria. Dilution-to-extinction experiments further demonstrated that Comamonas denitrificans and Clostridium aminobutyricum were dominant members of the community. A pure culture isolated from an anode biofilm after dilution to extinction was identified as C. denitrificans DX-4 based on 16S rRNA sequence and physiological and biochemical characterizations. Strain DX-4 was unable to respire using hydrous Fe(III) oxide but produced 35 mW/m2 using acetate as the electron donor in an MFC. Power generation by the facultative C. denitrificans depends on oxygen and MFC configuration, suggesting that a switch of metabolic pathway occurs for extracellular electron transfer by this denitrifying bacterium.  相似文献   

8.
Li C  Zhang L  Ding L  Ren H  Cui H 《Biosensors & bioelectronics》2011,26(10):4169-4176
Conductive polymer, one of the most attractive electrode materials, has been applied to coat anode of MFC to improve its performance recently. In this paper, two conductive polymer materials, polyaniline (PANI) and poly(aniline-co-o-aminophenol) (PAOA) were used to modify carbon felt anode and physical and chemical properties of the modified anodes were studied. The power output and biodiversity of modified anodes, along with unmodified carbon anode were compared in two-chamber MFCs. Results showed that the maximum power density of PANI and PAOA MFC could reach 27.4 mW/m(2) and 23.8 mW/m(2), comparing with unmodified MFC, increased by 35% and 18% separately. Low temperature caused greatly decrease of the maximum voltage by 70% and reduced the sorts of bacteria on anodes in the three MFCs. Anode biofilm analysis showed different bacteria enrichment: a larger mount of bacteria and higher biodiversity were found on the two modified anodes than on the unmodified one. For PANI anode, the two predominant bacteria were phylogenetically closely related to Hippea maritima and an uncultured clone MEC_Bicarb_Ac-008; for PAOA, Clostridiales showed more enrichment. Compare PAOA with PANI, the former introduced phenolic hydroxyl group by copolymerization o-aminophenol with aniline, which led to a different microbial community and the mechanism of group effect was proposed.  相似文献   

9.
Yang S  Jia B  Liu H 《Bioresource technology》2009,100(3):1197-1202
In order to analyze the effect of cathode's Pt loading side on the performance of single-chamber microbial fuel cells (MFCs), power generation of a bamboo charcoal membrane-less air-cathode MFC was examined. The maximum power outputs obtained were 0.144 and 1.16 mW, while the maximum voltage outputs were 0.400 and 0.500 V (external resistance was 500 Omega), respectively, when the Pt loading side facing to the air and to the anode chamber solution; after a long time of operation with the side of cathode loaded Pt facing to anode chamber solution, a biofilm was developed on the inner side of cathode. With the formation of this biofilm, the power outputs of MFC increased first, and then decreased to 0.8 mW; oxidation-reduction potentials (ORP) dropped first, and then achieved the level of stability. Coulombic efficiency (CE) increased at a certain extent. In addition, the impact of cathode-biofilm on the loss of water in anode chamber solution was determined.  相似文献   

10.
We investigated the mechanism of Congo red degradation and bacterial diversity in a single-chambered microbial fuel cell (MFC) incorporating a microfiltration membrane and air–cathode. The MFC was operated continuously for more than 4 months using a mixture of Congo red and glucose as fuel. We demonstrated that the Congo red azo bonds were reduced at the anode to form aromatic amines. This is consistent with the known mechanism of anaerobic biodegradation of azo dyes. The MFC developed a less dense biofilm at the anode in the presence of Congo red compared to its absence indicating that Congo red degradation negatively affected biofilm formation. Denaturing gradient gel electrophoresis and direct 16S ribosomal DNA gene nucleotide sequencing revealed that the microbial communities differed depending on whether Congo red was present in the MFC. Geobacter-like species known to generate electricity were detected in the presence or absence of Congo red. In contrast, Azospirillum, Methylobacterium, Rhodobacter, Desulfovibrio, Trichococcus, and Bacteroides species were only detected in its presence. These species were most likely responsible for degrading Congo red.  相似文献   

11.
In microbial fuel cells (MFC), wastewater is used as a fuel while organic and nutrient pollution in the wastewater are being treated. In the present study, commonly existing microbial populations in MFC anode biofilms were identified using high throughput FLX Titanium pyrosequencing to provide much more extensive information of anode microbial communities than previously possible. Using 454 FLX Titanium pyrosequencing, 31,901 sequence reads with an average length of 430 bp were obtained from 16S rRNA gene amplicons from different MFC anodes with different substrate exposure and respiration conditions, and microbial community structure and population identification were then analyzed using high-throughput bioinformatics methods. Although community profiles from the four samples were significantly different, hierarchical clustering analysis revealed several bacterial populations that commonly exist in the anode biofilm samples. These bacteria were phylogenetically distributed in Firmicutes and the alpha-, beta-, gamma-, and delta-subclasses of Proteobacteria. In addition, most of these populations were found to be novel anode bacteria and exhibited oligotrophic or substrate-concentration-insensitive growth. These findings suggest that commonly existing anode bacteria may play a key role in the stable operations of MFCs, combined with wastewater treatment plants, under fluctuating substrate and respiration conditions.  相似文献   

12.
Geobacter sulfurreducens developed highly structured, multilayer biofilms on the anode surface of a microbial fuel cell converting acetate to electricity. Cells at a distance from the anode remained viable, and there was no decrease in the efficiency of current production as the thickness of the biofilm increased. Genetic studies demonstrated that efficient electron transfer through the biofilm required the presence of electrically conductive pili. These pili may represent an electronic network permeating the biofilm that can promote long-range electrical transfer in an energy-efficient manner, increasing electricity production more than 10-fold.  相似文献   

13.
Geobacter sulfurreducens developed highly structured, multilayer biofilms on the anode surface of a microbial fuel cell converting acetate to electricity. Cells at a distance from the anode remained viable, and there was no decrease in the efficiency of current production as the thickness of the biofilm increased. Genetic studies demonstrated that efficient electron transfer through the biofilm required the presence of electrically conductive pili. These pili may represent an electronic network permeating the biofilm that can promote long-range electrical transfer in an energy-efficient manner, increasing electricity production more than 10-fold.  相似文献   

14.
Generally, high bioelectroactivity of anodophilic biofilm favors high power generation of microbial fuel cell (MFC); however, it is not clear whether it can promote denitrification of MFC synchronously. In this study, we studied the impact of anodophilic biofilm bioelectroactivity on the denitrification behavior of air-cathode MFC (AC-MFC) in steady state and found that high bioelectroactivity of anodophilic biofilm not only favored high power generation of the AC-MFC, but also promoted the growth of denitrifers at the anodes and strengthened denitrification. Anodophilic biofilms of AC-MFC with various bioelectroactivity were acclimated at conditions of open circuit (OC), Rext of 1000 Ω and 20 Ω (denoted as AC-MFC-OC, AC-MFC-1000Ω, and AC-MFC-20Ω, respectively) and performed for over 100 days. Electrochemical tests and microbial analysis results showed that the anode of the AC-MFC-20Ω delivered higher current response of both oxidation and denitrification and had higher abundance of electroactive bacteria than the AC-MFC-OC, AC-MFC-1000Ω, demonstrating a higher bioelectroactivity of the anodophilic biofilms. Moreover, these electroactive bacteria favored the accumulation of denitrifers, like Thauera and Alicycliphilus, probably by consuming trace oxygen through catalyzing oxygen reduction. The AC-MFC-20Ω not only delivered a 61.7% higher power than the AC-MFC-1000Ω, but also achieved a stable and high denitrification rate constant (kDN) of 1.9 h?1, which was 50% and 40% higher than that of the AC-MFC-OC and AC-MFC-1000Ω, respectively. It could be concluded that the high bioelectroactivity of the anodophilic biofilms not only favored high power generation of the AC-MFC, but also promoted the enrichment of denitrifers at the anodes and strengthened denitrification. This study provided an effective method for enhancing power generation and denitrification performance of the AC-MFC synchronously.  相似文献   

15.
Rod-shaped Alphaproteobacteria possessing long prosthecae-like appendages have been detected abundantly in biofilms attaching onto anode graphite of cellulose-fed microbial fuel cells (MFCs). To identify their ecological roles, the present study isolated a corresponding bacterium (strain Mfc52) by direct plating of a biofilm suspension onto a solid medium containing glucose and ferric ion. Phylogenetic analysis revealed that this strain is deeply branched in the class Alphaproteobacteria and may represent a novel order. Strain Mfc52 fermented sugars and produced lactate, acetate, and fumarate, whereas ferric ion stimulated the growth on glucose. When an MFC was inoculated with this strain and supplemented with glucose, it fermented glucose and generated electricity by oxidizing organic acids produced from glucose. Electron micrographs showed that a fraction of cells in a liquid culture had prosthecae-like appendages that were abundantly observed in anode biofilm. These observations suggest that the bacterial population represented by strain Mfc52 shared an important niche in the cellulose-fed MFC, where it generated electricity by oxidizing intermediate metabolites from cellulose degradation.  相似文献   

16.
The microbial communities associated with electrodes in closed and open circuit microbial fuel cells (MFCs) fed with glucose were analyzed by 16S rRNA approach and compared. The comparison revealed that bacteria affiliated with the Aeromonas sp. within the Gammaproteobacteria constituted the major population in the closed circuit MFC (harvesting electricity) and considered to play important roles in current generation. We, therefore, attempted to isolate the dominant bacteria from the anode biofilm, successfully isolated a Fe (III)‐reducing bacterium phylogenetically related to Aeromonas sp. and designated as strain ISO2‐3. The isolated strain ISO2‐3 could grow and concomitantly produce current (max. 0.24 A/m2) via oxidation of glucose or hydrogen with an electrode serving as the sole electron acceptor. The strain could ferment glucose, but generate less electrical current. Cyclic voltammetry supported the strain ISO2‐3 was electrically active and likely to transfer electrons to the electrode though membrane‐associated compounds (most likely c‐type cytochrome). This mechanism requires intimate contact with the anode surface. Scanning electron microscopy revealed that the strain ISO2‐3 developed multiplayer biofilms on the anode surface and also produced anchor‐like filamentous appendages (most likely pili) that may promote long‐range electron transport across the thick biofilm. Biotechnol. Bioeng. 2009; 104: 901–910. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Carbon nanotube (CNT) is a promising electrode material and has been used as an anode modifier in microbial fuel cells (MFCs). In this study, a new method of simultaneously adding CNT powders and Geobacter sulfurreducens into the anode chamber of a MFC was used, aiming to form a composite biofilm on the anode. The performance of MFCs such as startup time and steady-state power generation was investigated under conditions of different CNT powders dosages. Results showed that both the startup time and the anodic resistance were reduced. The optimal dosage of CNT powders pre-treated by acid was 4 mg/mL for the anode chamber with an effective volume of 25 mL. The anodic resistance and output voltage of the MFC with CNT powders addition were maintained around 180 Ω and 650 mV during 40 days operation, while those of the MFC without CNT powders addition increased from 250 Ω to 540 Ω and decreased from 630 mV to 540 mV, respectively, demonstrating that adding CNT powders helped stabilize the anodic resistance, thus the internal resistance and power generation during long-term operation. Based on cyclic voltammogram, the electrochemical activity of anodic biofilm was enhanced by adding CNT powders, though no significant increase of the biomass in anodic biofilm was detected by phospholipids analysis. There was no remarkable change of ohmic resistance with an addition of CNT powders revealed by current interrupt method, which indicated that the rate of mass transfer might be promoted by the presence of CNT powders.  相似文献   

18.
The effect of anodic biofilm growth and extent of its coverage on the anodic surface of a single chambered mediatorless microbial fuel cell (MFC) was evaluated for bioelectricity generation using designed synthetic wastewater (DSW) and chemical wastewater (CW) as substrates and anaerobic mixed consortia as biocatalyst. Three MFCs (plain graphite electrodes, air cathode, Nafion membrane) were operated separately with variable biofilm coverage [control; anode surface coverage (ASC), 0%], partially developed biofilm [PDB; ASC approximately 44%; 90 days] and fully developed biofilm [FDB; ASC approximately 96%; 180 days] under acidophilic conditions (pH 6) at room temperature. The study depicted the effectiveness of anodic biofilm formation in enhancing the extracellular electron transfer in the absence of mediators. Higher specific power production [29mW/kg COD(R) (CW and DSW)], specific energy yield [100.46J/kg VSS (CW)], specific power yield [0.245W/kg VSS (DSW); 0.282W/kg VSS (CW)] and substrate removal efficiency of 66.07% (substrate degradation rate, 0.903kgCOD/m(3)-day) along with effective functioning fuel cell at relatively higher resistance [4.5kOmega (DSW); 14.9kOmega (CW)] correspond to sustainable power [0.008mW (DSW); 0.021mW (CW)] and effective electron discharge (at higher resistance) and recovery (Coulomb efficiency; 27.03%) were observed especially with FDB operation. Cyclic voltammetry analysis documented six-fold increment in energy output from control (1.812mJ) to PDB (10.666mJ) operations and about eight-fold increment in energy from PDB to FDB (86.856mJ). Biofilm configured MFC was shown to have the potential to selectively support the growth of electrogenic bacteria with robust characteristics, capable of generating higher power yields along with substrate degradation especially operated with characteristically complex wastewaters as substrates.  相似文献   

19.
The fabrication and performance of a flexible and stretchable microbial fuel cell (MFC) monolithically integrated into a single sheet of textile substrate are reported. The single‐layer textile MFC uses Pseudomonas aeruginosa (PAO1) as a biocatalyst to produce a maximum power of 6.4 µW cm?2 and current density of 52 µA cm?2, which are substantially higher than previous textile‐MFCs and are similar to other flexible paper‐based MFCs. The textile MFC demonstrates a stable performance with repeated stretching and twisting cycles. The membrane‐less single‐chamber configuration drastically simplifies the fabrication and improves the performance of the MFC. A conductive and hydrophilic anode in a 3D fabric microchamber maximizes bacterial electricity generation from a liquid environment and a silver oxide/silver solid‐state cathode reduces cathodic overpotential for fast catalytic reaction. A simple batch fabrication approach simultaneously constructs 35 individual devices, which will revolutionize the mass production of textile MFCs. This stretchable and twistable power device printed directly onto a single textile substrate can establish a standardized platform for textile‐based biobatteries and will be potentially integrated into wearable electronics in the future.  相似文献   

20.
Two different microbial fuel cell (MFC) configurations were investigated for electricity production from ethanol and methanol: a two-chambered, aqueous-cathode MFC; and a single-chamber direct-air cathode MFC. Electricity was generated in the two-chamber system at a maximum power density typical of this system (40+/-2 mW/m2) and a Coulombic efficiency (CE) ranging from 42% to 61% using ethanol. When bacteria were transferred into a single-chamber MFC known to produce higher power densities with different substrates, the maximum power density increased to 488+/-12 mW/m2 (CE = 10%) with ethanol. The voltage generated exhibited saturation kinetics as a function of ethanol concentration in the two-chambered MFC, with a half-saturation constant (Ks) of 4.86 mM. Methanol was also examined as a possible substrate, but it did not result in appreciable electricity generation. Analysis of the anode biofilm and suspension from a two-chamber MFC with ethanol using 16S rDNA-based techniques indicated that bacteria with sequences similar to Proteobacterium Core-1 (33.3% of clone library sequences), Azoarcus sp. (17.4%), and Desulfuromonas sp. M76 (15.9%) were significant members of the anode chamber community. These results indicate that ethanol can be used for sustained electricity generation at room temperature using bacteria on the anode in a MFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号