首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine isolates obtained from a great scallop hatchery in Norway were characterized using a polyphasic approach. Strains were Gram-negative, aerobic and motile rods with oxidative metabolism. Phylogenetic analysis based on the sequences of 16S rRNA and rpoB genes showed that these strains formed two different groups associated with members of the genus Neptuniibacter. DNA–DNA hybridization (DDH) and Average Nucleotide Identity (ANI) demonstrated that the isolates constituted two novel species of this genus, which can be phenotypically differentiated from their closest relatives. The names Neptuniibacter marinus sp. nov. and Neptuniibacter pectenicola sp. nov are proposed, with ATR 1.1T (=CECT 8938T = DSM 100783T) and LFT 1.8T (=CECT 8936T = DSM 100781T) as respective type strains.  相似文献   

2.
Two Gram-negative strains obtained from tank water in a scallop hatchery in Norway, were phenotypically and genotypically characterized in order to clarify their taxonomic position. On the basis of 16S rRNA gene sequence analysis, these isolates, ATF 5.2T and ATF 5.4T, were included in the genus Halomonas, being their closest relatives H. smyrnensis and H. taeanensis, with similarities of 98.9% and 97.7%, respectively. Sequence analysis of the housekeeping genes atpA, ftsZ, gyrA, gyrB, mreB, rpoB, rpoD, rpoE, rpoH, rpoN and rpoS clearly differentiated the isolates from the currently described Halomonas species, and the phylogenetic analysis using concatenated sequences of these genes located them in two robust and independent branches. DNA–DNA hybridization (eDDH) percentage, together with average nucleotide identity (ANI), were calculated using the complete genome sequences of the strains, and demonstrate that the isolates constitute two new species of Halomonas, for which the names of Halomonas borealis sp. nov. and Halomonas niordiana sp. nov. are proposed, with type strains ATF 5.2T (=CECT 9780T = LMG 31367T) and ATF 5.4T (=CECT 9779T = LMG 31227T), respectively.  相似文献   

3.
Bifidobacterium is one of the dominating bacterial genera in the honey bee gut, and they are the key degrader of diet polysaccharides for the host. Previous genomic analysis shows that they belong to separate phylogenetic clusters and exhibited different functional potentials in hemicellulose digestion. Here, three novel strains from the genus Bifidobacterium were isolated from the guts of the honey bee (Apis mellifera). Phylogenomic analysis showed that the isolates could be grouped into four phylogenetic clusters. The average nucleotide identity values between strains from different clusters are <95%, while strains in Cluster IV belong to the characterized species Bifidobacterium asteroides. Carbohydrate-active enzyme annotation confirmed that the metabolic capacity for carbohydrates varied between clusters of strains. Cells are Gram-positive rods; they grew both anaerobically and in a CO2-enriched atmosphere. All strains grew at a temperature range of 20–42 °C, with optimum growth at 35 °C. The pH range for growth was 5–9. Strains from different phylogenetic clusters varied in multiple phenotypic and chemotaxonomic characterizations. Thus, we propose three novel species Bifidobacterium apousia sp. nov. whose type strain is W8102T (=CGMCC 1.18893 T = JCM 34587 T), Bifidobacterium choladohabitans sp. nov., whose type strain is B14384H11T (=CGMCC 1.18892 T = JCM 34586 T), and Bifidobacterium polysaccharolyticum sp. nov. whose type strain is W8117T (=CGMCC 1.18894 T = JCM 34588 T).  相似文献   

4.
Ten Bifidobacterium strains, i.e., 6T3, 64T4, 79T10, 80T4, 81T8, 82T1, 82T10, 82T18, 82T24, and 82T25, were isolated from mantled guereza (Colobus guereza), Sumatran orangutan (Pongo abeli), silvery marmoset (Mico argentatus), golden lion tamarin (Leontopithecus rosalia), pied tamarin (Saguinus bicolor), and common pheasant (Phaisanus colchinus). Cells are Gram-positive, non-motile, non-sporulating, facultative anaerobic, and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on the core genome sequences revealed that isolated strains exhibit close phylogenetic relatedness with Bifidobacterium genus members belonging to the Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium pullorum, and Bifidobacterium tissieri phylogenetic groups. Phenotypic characterization and genotyping based on the genome sequences clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, B. phasiani sp. nov. (6T3 = LMG 32224T = DSM 112544T), B. pongonis sp. nov. (64T4 = LMG 32281T = DSM 112547T), B. saguinibicoloris sp. nov. (79T10 = LMG 32232T = DSM 112543T), B. colobi sp. nov. (80T4 = LMG 32225T = DSM 112552T), B. simiiventris sp. nov. (81T8 = LMG 32226T = DSM 112549T), B. santillanense sp. nov. (82T1 = LMG 32284T = DSM 112550T), B. miconis sp. nov. (82T10 = LMG 32282T = DSM 112551T), B. amazonense sp. nov. (82T18 = LMG 32297T = DSM 112548T), pluvialisilvae sp. nov. (82T24 = LMG 32229T = DSM 112545T), and B. miconisargentati sp. nov. (82T25 = LMG 32283T = DSM 112546T) are proposed as novel Bifidobacterium species.  相似文献   

5.
Pseudomonas strains IT-194P, IT-215P, IT-P366T and IT-P374T were isolated from the rhizospheres of wheat grown in soils sampled from different fields (some of them known to be disease-suppressive) located near Mionica, Serbia. Phylogenetic analysis of the 16S rRNA genes and of whole genome sequences showed that these strains belong to two potentially new species, one containing strains IT-P366T and IT-194P and clustering (whole genome analysis) next to P. umsongensis DSM16611T, and another species containing strains IT-P374T and IT-215P and clustering next to P. koreensis LMG21318T. Genome analysis confirmed the proposition of novel species, as ANI was below the threshold of 95% and dDDH below 70% for strains IT-P366T (compared with P. umsongensis DSM16611T) and IT-P374T (compared with P. koreensis LMG21318T). Unlike P. umsongensis DSM16611T, strains of P. serbica can grow on D-mannitol, but not on pectin, D-galacturonic acid, L-galactonic acid lactone and α-hydroxybutyric acid. In contrary to P. koreensis LMG21318T, strains of P. serboccidentalis can use sucrose, inosine and α-ketoglutaric acid (but not L-histidine) as carbon sources. Altogether, these results indicate the existence of two novel species for which we propose the names Pseudomonas serbica sp. nov., with the type strain IT-P366T (=CFBP 9060 T = LMG 32732 T = EML 1791 T) and Pseudomonas serboccidentalis sp. nov., with the type strain IT-P374T (=CFBP 9061 T = LMG 32734 T = EML 1792 T). Strains from this study presented a set of phytobeneficial functions modulating plant hormonal balance, plant nutrition and plant protection, suggesting a potential as Plant Growth-Promoting Rhizobacteria (PGPR).  相似文献   

6.
A group of four strains isolated from clams (Venerupis decussata and Venerupis philippinarum) in Galicia (NW Spain) were subjected to a polyphasic characterization, based on the phenotypic characteristics, the analysis of chemotaxonomic features, the sequencing of the 16S rRNA and five housekeeping (atpA, pyrH, recA, rpoA and rpoD) genes, as well as DNA–DNA hybridization (DDH). The analysis of the phenotypic and chemotaxonomic characteristics and the results of a phylogenetic study, based on the 16S rRNA gene sequence analysis and multilocus sequence analysis, clearly indicated that these strains belong to the genus Vibrio and were allocated between the Splendidus and Anguillarum clades showing a close relationship with the type strains of Vibrio tapetis (98.8 %), Vibrio pomeroyi (98.0 %) and Vibrio crassostreae (97.9 %). DNA–DNA hybridization results confirmed that these isolates constitute a new species. The name Vibrio cortegadensis sp. nov. is proposed with C 16.17T (=CECT 7227T=LMG 27474T) as the type strain.  相似文献   

7.
Social bees harbor a community of gut mutualistic bacteria, among which bifidobacteria occupy an important niche. Recently, four novel species have been isolated from guts of different bumblebees, thus allowing to suppose that a core bifidobacterial population may be present in wild solitary bees. To date there is sparse information about bifidobacteria in solitary bees such as Xylocopa and Osmia spp., this study is therefore focused on the isolation and characterization of bifidobacterial strains from solitary bees, in particular carpenter bee (Xylocopa violacea), builder bee (Osmia cornuta), and red mason bee (Osmia rufa). Among the isolates from Osmia spp. no new species have been detected whereas among Xylocopa isolates four strains (XV2, XV4, XV10, XV16) belonging to putative new species were found. Isolated strains are Gram-positive, lactate- and acetate-producing and possess the fructose-6-phosphate phosphoketolase enzyme. Full genome sequencing and genome annotation were performed for XV2 and XV10. Phylogenetic relationships were determined using partial and complete 16S rRNA sequences and hsp60 restriction analysis that confirmed the belonging of the new strains to Bifidobacterium genus and the relatedness of the strains XV2 and XV10 with XV16 and XV4, respectively. Phenotypic tests were performed for the proposed type strains, reference strains and their closest neighbor in the phylogenetic tree. The results support the proposal of two novel species Bifidobacterium xylocopae sp. nov. whose type strain is XV2 (=DSM 104955T = LMG 30142T), reference strain XV16 and Bifidobacterium aemilianum sp. nov. whose type strain is XV10 (=DSM 104956T = LMG 30143T), reference strain XV4.  相似文献   

8.
The status of two mesophilic filamentous actinomycetes isolated from an arid Australian soil sample was determined using a polyphasic taxonomic approach. The isolates had chemical and morphological properties consistent with their classification in the genus Amycolatopsis, assignments that were supported by analysis of 16S rRNA gene sequence data. Isolate SF26T formed a distinct phyletic line and hence was sharply separated from its nearest phylogenetic neighbour, Amycolatopsis sacchari DSM 44468T. In contrast, isolate SF27T formed a subclade in the Amycolatopsis tree with Amycolatopsis vancoresmycina DSM 44592T but was separated readily from the latter by DNA:DNA pairing data. The two isolates were distinguished from one another and from their respective nearest phylogenetic neighbours using a range of phenotypic properties. These data indicate that the two isolates should be recognized as new species in the genus Amycolatopsis. The names proposed for these new taxa are Amycolatopsis bartoniae sp. nov. and Amycolatopsis bullii sp. nov. with isolates SF26T (=NCIMB 14706T = NRRL B-2846T) and SF27T (=NCIMB 14707T = NRRL B-24847T) as the respective type strains.  相似文献   

9.
Three forest and four botanical garden top soil isolates with unique MALDI-TOF mass spectra were identified as Paraburkholderia strains closely related to Paraburkholderia sartisoli through recA gene sequence analysis. OrthoANIu, digital DNA-DNA hybridization analyses and phylogenomic analyses demonstrated that the five strains represented two new Paraburkholderia species closely related to P. sartisoli. The genome of strain LMG 31841T had a cumulative size of 6.3 Mb and a G + C content of 62.64 mol%; strain LMG 32171T had a genome size of 5.8 Mb and a G + C content of 62.91 mol%. Hemolysis on horse blood agar, beta-galactosidase and phosphoamidase activity, and assimilation of adipic acid and trisodium citrate allowed phenotypic differentiation of strains LMG 31841T, LMG 32171T and P. sartisoli LMG 24000T. An analysis of the genomic potential for aromatic compound degradation yielded additional differences among strains representing these three species, but also highlighted some discrepancies between the presence of genes and pathways, and the phenotype revealed through growth experiments using a mineral salts medium supplemented with single aromatic compounds as carbon sources. We propose to classify all isolates from the present study into two novel Paraburkholderia species, for which we propose the names Paraburkholderia gardini with LMG 32171T (=CECT 30344T) as the type strain, and Paraburkholderia saeva with LMG 31841T (=CECT 30338T) as the type strain.  相似文献   

10.
Four strains, designated as C-2, C-17T, C-39T and Ch-15, were isolated from farmed rainbow trout samples showing clinical signs during an investigation for a fish-health screening study. The pairwise 16S rRNA gene sequence analysis showed that strain C-17T shared the highest identity level of 98.1 % with the type strain of Chryseobacterium piscium LMG 23089T while strains C-2, C-39T and Ch-15 were closely related to Chryseobacterium balustinum DSM 16775T with an identity level of 99.3 %. A polyphasic approach involving phenotypic, chemotaxonomic and genome-based analyses was employed to determine the taxonomic provenance of the strains. The overall genome relatedness indices including dDDH and ANI analyses confirmed that strains C-2, C-17T, C-39T and Ch-15 formed two novel species within the genus Chryseobacterium. Chemotaxonomic analyses showed that strains C-17T and C-39T have typical characteristics of the genus Chryseobacterium by having phosphatidylethanolamine in their polar lipid profile, MK-6 as only isoprenoid quinone and the presence of iso-C15:0 as major fatty acid. The genome size and G + C content of the strains ranged between 4.4 and 5.0 Mb and 33.5 – 33.6 %, respectively. Comprehensive genome analyses revealed that the strains have antimicrobial resistance genes, prophages and horizontally acquired genes in addition to secondary metabolite-coding gene clusters. In conclusion, based on the polyphasic analyses conducted on the present study, strains C-17T and C-39T are representatives of two novel species within the genus Chryseobacterium, for which the names Chryseobacterium turcicum sp. nov. and Chryseobacterium muglaense sp. nov. with the type strains C-17T (=JCM 34190T = KCTC 82250T) and C-39T (=JCM 34191T = KCTC 822251T), respectively, are proposed.  相似文献   

11.
Strain EuI1cT is the first actinobacterial endophyte isolated from Elaeagnus umbellata that was shown to be infective on members of Elaeagnaceae and Morella but lacking the ability to form effective root nodules on its hosts. The strain can be easily distinguished from strains of other Frankia species based on its inability to produce vesicles, the specialized thick-walled structures where nitrogen fixation occurs. Chemotaxonomically, strain EuI1cT contains phosphatidylinositol, diphosphatidylglycerol, two glycophospholipids and phosphatidylglycerol as phospholipids. The whole cell sugars were composed of glucose, galactose, mannose, ribose, rhamnose and fucose as diagnostic sugars of the species. Major fatty acids were iso-C16:0, C17:1 ω8c and C15:0 and C17:0 and the predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). Analysis of the 16S rRNA gene sequence of strain EuI1cT showed 97, 97.4 and 97.9% identity with Frankia elaeagni DSM 46783T, Frankia casuarinae DSM 45818T and Frankia alni DSM 45986T, respectively. Digital DNA:DNA hybridizations with type strains of the three Frankia species with validly/effectively published names are significantly below 70%. These results warrant distinction of EuI1cT (= DSM 45817T = CECT 9037T) as the type strain of a novel species designated Frankia inefficax sp. nov.  相似文献   

12.
Several strains belonging to the genus Corynebacterium, but not to any described species of the genus were isolated from bovine mastitic milk samples over the past five years in the diagnostic unit of the University of Bern. Six of these strains (18M0132T, 17M2518, 18M0913, 19M0083, 20M1046 and 20M1090) that were phenotypically similar were further characterized genotypically. Gram-positive coryneform rods were catalase positive, facultative anaerobe and CAMP-test negative. Whole genome sequencing and subsequent phylogenetic analysis revealed their genome size to be 2.53 Mb and their G + C content to be between 65.4 and 65.5 mol%. Digital DNA-DNA hybridisation (dDDH) showed the highest similarity of only less than 20% with Corynebacterium mastitidis and Corynebacterium frankenforstense, which indicated that the isolates belong to an undescribed Corynebacterium species. This was confirmed by studying the average nucleotide identity (ANI) where the accepted species boundary is around 95% and which ranged between 70.3% and 74.9% with the most closely related species C. mastitidis. We established MALDI-TOF fingerprints of the species, which allows a clear separation from related species and can be used by other laboratories for diagnostic purposes.Based on our analyses we conclude that the selected strains belong to a previously undescribed species and propose the name Corynebacterium uberis sp. nov. The proposed type strain is 18M0132T (=DSM 111922T, = CCOS 1972T).  相似文献   

13.
Spectra of five isolates (LMG 28358T, LMG 29879T, LMG 29880T, LMG 28359T and R-53705) obtained from gut samples of wild bumblebees of Bombus pascuorum, Bombus lapidarius and Bombus terrestris were grouped into four MALDI-TOF MS clusters. RAPD analysis revealed an identical DNA fingerprint for LMG 28359T and R-53705 which also grouped in the same MALDI-TOF MS cluster, while different DNA fingerprints were obtained for the other isolates.Comparative 16S rRNA gene sequence analysis of the four different strains identified Gilliamella apicola NCIMB 14804T as nearest neighbour species. Average nucleotide identity values of draft genome sequences of the four isolates and of G. apicola NCIMB 14804T were below the 96% threshold value for species delineation and all four strains and G. apicola NCIMB 14804T were phenotypically distinct. Together, the draft genome sequences and phylogenetic and phenotypic data indicate that the four strains represent four novel Gilliamella species for which we propose the names Gilliamella intestini sp. nov., with LMG 28358T as the type strain, Gilliamella bombicola sp. nov., with LMG 28359T as the type strain, Gilliamella bombi sp. nov., with LMG 29879T as the type strain and Gilliamella mensalis sp. nov., with LMG 29880T as the type strain.  相似文献   

14.
Ten Gram-negative, rod-shaped and motile bacterial strains were isolated from spider crab (M27.10, M27.11a, F36.1, F36.4, M56.1, F76.17b, M146.1, M166.3 and M166.6) and pullet carpet shell clam (SBRF 1.10) collected in the coast of Galicia. Analyses of the 16S rRNA genes showed that the strains belong to the genus Kiloniella and have high similarity with the species Kiloniella spongiae (99.44–99.86%) and Kiloniella litopenaei (99.0–99.5%). Strains M56.1T (=CECT 9195, =LMG 29925), M146.1 (=CECT 9193, =LMG 29926) and SBRF 1.10 (=CECT 9194, =LMG 29927) were selected on the basis of genotyping by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Phylogenetic analysis based on concatenated sequences of the genes gyrB, ftsZ, rpoD and mreB showed that the isolates form a differentiated branch within the genus Kiloniella. Moreover, the average nucleotide identity (ANIm, ANIb and OrthoANI) and in silico estimated DNA–DNA reassociation values between selected Galician isolates and Kiloniella species were below the established cut-off for species deliniation. The results obtained in the genetic and phenotypical analyses indicate that the isolates represent a new species of the genus Kiloniella, for which the name Kiloniella majae sp. nov. is proposed with strain M56.1T (=CECT 9195T, =LMG 29925T) as the type strain.  相似文献   

15.
Two novel marine actinobacteria, designated as SCSIO 60955T and SCSIO 61214T, were isolated from deep-sea sediment samples collected from the South China Sea. The cells of these organisms stained Gram-negative and were rod shaped. These strains were aerobic, and catalase- and oxidase-positive. Optimal growth occurred at 28 °C and pH 7 over 14 days of cultivation. Both strains possessed phospholipids and phosphoglycolipids. The main menaquinone was MK-7. The major fatty acid was C16:0. The peptidoglycan structure was type A1γ′ (meso-Dpm). Analysis of genome sequences revealed that the genome size of SCSIO 60955T was 3.37 Mbp with G + C content of 76.1%, while the genome size of SCSIO 61214T was 3.67 Mbp with a G + C content of 74.8%. The ANI and 16S rRNA gene analysis results showed that the pairwise similarities between the two strains were 73.4% and 97.7% and that with other recognized Thermoleophilia species were less than 69.1% and 87.8%, respectively. Phylogenetic analysis of the 16S rRNA gene sequences showed that strains SCSIO 60955T and SCSIO 61214T were separately clustered together and formed a well-separated phylogenetic branch distinct from their most related neighbor Gaiella occulta. Based on the data presented here, these two strains are proposed to represent two novel species of a novel genus, for which the name Miltoncostaea marina gen. nov., sp. nov., with the type strain SCSIO 60955T (=DSM 110281T =CGMCC 1.18757T), and Miltoncostaea oceani sp. nov., with the type strain SCSIO 61214T (=KCTC 49527T =CGMCC 1.18758T) are proposed. We also propose that these organisms represent a novel family named Miltoncostaeaceae fam. nov. of a novel order Miltoncostaeales ord. nov.  相似文献   

16.
Microbiota analysis of blown pack spoiled salami revealed five distinguishable Lactobacillus isolates we could not assign to a known species. Two of the isolates (TMW 1.2172T and TMW 1.1920) are rod-shaped, whilst three isolates (TMW 1.2098T, TMW 1.2118 and TMW 1.2188) appear coccus shaped or as short rods. All isolates are Gram-stain positive, facultative anaerobic, catalase and oxidase negative, non-motile and non-sporulating. Phylogenetic analysis of the 16S rRNA, dnaK, pheS and rpoA gene sequences revealed two distinct lineages within the genus Lactobacillus (L.). The isolates are members of the Lactobacillus alimentarius group with Lactobacillus ginsenosidimutans DSM 24154T (99.4% 16S similarity), Lactobacillus versmoldensis DSM 14857T (97.9%) and Lactobacillus furfuricola DSM 27174T (97.7%) as phylogenetic closest related species and L. alimentarius DSM 20249T (97.7%) and Lactobacillus paralimentarius DSM 13961T (97.5%) as closest relatives, respectively. Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the isolates and their close related type strains are lower than 80% and 25%, respectively. For both designated type strains, the peptidoglycan type is A4α l-Lys-d-Asp and the major fatty acids are C16:0, C18:1ω9c and summed feature 7. Based on phylogenetic, phenotypic and chemotaxonomic analysis we demonstrated that the investigated isolates belong to two novel Lactobacillus species for which we propose the names Lactobacillus salsicarnum with the type strain TMW 1.2098T = DSM 109451T = LMG 31401T and Lactobacillus halodurans with the type strain TMW 1.2172T = DSM 109452T = LMG 31402T.  相似文献   

17.
18.
Exploration of unexplored habitats for novel actinobacteria with high bioactivity potential holds great promise in the search for novel entities. During the course of isolation of actinobacteria from desert soils, four actinobacteria, designated as 5K548T, 7K502T, 16K309T and 16K404T, were isolated from the Karakum Desert and their bioactivity potential as well as taxonomic provenances were revealed by comprehensive genome analyses. Pairwise sequence analyses of the 16S rRNA genes indicated that the four strains are representatives of putatively novel taxa within the prolific actinobacterial genus Saccharopolyspora. The strains have typical chemotaxonomic characteristics of the genus Saccharopolyspora by having meso-diaminopimelic acid as diagnostic diaminoacid, arabinose, galactose and ribose as whole-cell sugars. Consistent with this assignment, all of the isolates contained phosphatidylcholine in their polar lipid profiles and MK-9(H4) as the predominant menaquinone. The sizes of the genomes of the isolates ranged from 6.0 to 10.2 Mb and the associated G + C contents from 69.6 to 69.7 %. Polyphasic characterizations including determination of overall genome relatedness indices revealed that the strains are representatives of four novel species in the genus Saccharopolyspora. Consequently, isolates 5K548T, 7K502T, 16K404T and 16K309T are proposed as novel Saccharopolyspora species for which the names of Saccharopolyspora karakumensis sp. nov., Saccharopolyspora elongata sp. nov., Saccharopolyspora aridisoli sp. nov. and Saccharopolyspora terrae sp. nov. are proposed, respectively. Comprehensive genome analysis for biosynthetic gene clusters showed that the strains have high potential for novel secondary metabolites. Moreover, the strains harbour many antimicrobial resistance genes providing more evidence for their potentiality for bioactive metabolites.  相似文献   

19.
Isolations from oak symptomatic of Acute Oak Decline, alder and walnut log tissue, and buprestid beetles in 2009–2012 yielded 32 Gram-negative bacterial strains showing highest gyrB sequence similarity to Rahnella aquatilis and Ewingella americana. Multilocus sequence analysis (using partial gyrB, rpoB, infB and atpD gene sequences) delineated the strains into six MLSA groups. Two MLSA groups contained reference strains of Rahnella genomospecies 2 and 3, three groups clustered within the Rahnella clade with no known type or reference strains and the last group contained the type strain of E. americana. DNA–DNA relatedness assays using both the microplate and fluorometric methods, confirmed that each of the five Rahnella MLSA groups formed separate taxa. Rahnella genomospecies 2 and 3 were previously not formally described due to a lack of distinguishing phenotypic characteristics. In the present study, all five Rahnella MLSA groups were phenotypically differentiated from each other and from R. aquatilis. Therefore we propose to classify the strains from symptomatic oak, alder and walnut and buprestid beetles as: Rahnella victoriana sp. nov. (type strain FRB 225T = LMG 27717T = DSM 27397T), Rahnella variigena sp. nov. (previously Rahnella genomosp. 2, type strain CIP 105588T = LMG 27711T), Rahnella inusitata sp. nov. (previously Rahnella genomosp. 3, type strain DSM 30078T = LMG 2640T), Rahnella bruchi sp. nov. (type strain FRB 226T = LMG 27718T = DSM 27398T) and Rahnella woolbedingensis sp. nov. (type strain FRB 227T = LMG 27719T = DSM 27399T).  相似文献   

20.
A total of 26 Gram-negative, motile, gently curved, and rod-shaped isolates were recovered, during a study to determine the faeco-prevalence of Helicobacter spp. in urban wild birds. Pairwise comparisons of the 16S rRNA gene sequences indicated that these isolates belonged to the genus Helicobacter and phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolates were separated into two divergent groups. The first group consisted of 20 urease-positive isolates sharing the highest 16S rRNA gene sequence identity levels of 98.5–98.6% to H. mustelae ATCC 43772T, while the second group contained six urease-negative isolates with the sequence identity level of 98.5% to the type strain of H. pametensis ATCC 51478T. Five isolates were chosen and subjected to comparative whole-genome analysis. The phylogenetic analysis of the 16S rRNA, gyrA and atpA gene sequences showed that Helicobacter isolates formed two separate phylogenetic clades, differentiating the isolates from the other Helicobacter species. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses between strains faydin-H8T, faydin-H23T and their close neighbors H. anseris MIT 04-9362T and H. pametensis ATCC 51478T, respectively, confirmed that both strains represent novel species in the genus Helicobacter. The DNA G+C contents of the strains faydin-H8T and faydin-H23T are 32.0% and 37.6%, respectively. The results obtained for the characterization of the wild bird isolates indicate that they represent two novel species, for which the names Helicobacter anatolicus sp. nov., and Helicobacter kayseriensis sp. nov., are proposed, with faydin-H8T(=LMG 32237T = DSM 112312T) and faydin-H23T(=LMG 32236T = CECT 30508T) as respective type strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号