首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain.  相似文献   

2.
ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.  相似文献   

3.
ATP-binding cassette (ABC)-type proteins are essential for bile formation in vertebrate liver. BSEP, MDR1, MDR2, and MRP2 ABC transporters are targeted to the apical (canalicular) membrane of hepatocytes where they execute ATP-dependent transport of bile acids, drugs, amphipathic cations, phospholipids, and conjugated organic anions, respectively. Changes in activity and abundance of transporters in the canalicular membrane regulate bile flow; however, little is known regarding cellular proteins that bind ABC transporters and regulate their trafficking. A yeast two-hybrid screen identified HAX-1 as a binding partner for BSEP, MDR1, and MDR2. The interactions were validated biochemically by glutathione S-transferase pull-down and co-immunoprecipitation assays. BSEP and HAX-1 were over-represented in rat liver subcellular fractions enriched for canalicular membrane vesicles, microsomes, and clathrin-coated vesicles. HAX-1 was bound to BSEP, MDR1, and MDR2 in canalicular membrane vesicles and co-localized with BSEP and MDR1 in the apical membrane of Madin-Darby canine kidney (MDCK) cells. RNA interference of HAX-1 increased BSEP levels in the apical membrane of MDCK cells by 71%. Pulse-chase studies indicated that HAX-1 depletion did not affect BSEP translation, post-translational modification, delivery to the plasma membrane, or half-life. HAX-1 depletion resulted in an increased peak of metabolically labeled apical membrane BSEP at 4 h and enhanced retention at 6 and 9 h. HAX-1 also interacts with cortactin. Expression of dominant negative cortactin increased steady state levels of BSEP 2-fold in the apical membrane of MDCK cells, as did expression of dominant negative EPS15. These findings suggest that HAX-1 and cortactin participate in BSEP internalization from the apical membrane.  相似文献   

4.
Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice   总被引:3,自引:0,他引:3  
Lam P  Wang R  Ling V 《Biochemistry》2005,44(37):12598-12605
In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.  相似文献   

5.
The bile salt export pump (BSEP, ABCB11) couples ATP hydrolysis with transport of bile acids into the bile canaliculus of hepatocytes. Its localization in the apical canalicular membrane is physiologically regulated by the demand to secrete biliary components. To gain insight into how such localization is regulated, we studied the intracellular trafficking of BSEP tagged with yellow fluorescent protein (YFP) in polarized WIF-B9 cells. Confocal imaging revealed that BSEP-YFP was localized at the canalicular membrane and in tubulo-vesicular structures either adjacent to the microtubule-organizing center or widely distributed in the cytoplasm. In the latter two locations, BSEP-YFP colocalized with rab11, an endosomal marker. Selective photobleaching experiments revealed that single BSEP-YFP molecules resided in canalicular membranes only transiently before exchanging with intracellular BSEP-YFP pools. Such exchange was inhibited by microtubule and actin inhibitors and was unaffected by brefeldin A, dibutyryl cyclic AMP, taurocholate, or PI 3-kinase inhibitors. Intracellular carriers enriched in BSEP-YFP elongated and dissociated as tubular elements from a globular structure adjacent to the microtubule-organizing center. They displayed oscillatory movement toward either canalicular or basolateral membranes, but only fused with the canalicular membrane. The pathway between canalicular and intracellular membranes that BSEP constitutively cycles within could serve to regulate apical pools of BSEP as well as other apical membrane transporters.  相似文献   

6.
Human ATP-binding cassette (ABC) transporters comprise a family of 48 membrane-spanning transport proteins, many of which are associated with genetic diseases or multidrug resistance of cancers. In this study, we present a comprehensive approach for the cloning, expression, and purification of human ABC transporters in the yeast Pichia pastoris. We analyzed the expression of 25 proteins and demonstrate that 11 transporters, including ABCC3, ABCB6, ABCD1, ABCG1, ABCG4, ABCG5, ABCG8, ABCE1, ABCF1, ABCF2, and ABCF3, were expressed at high levels comparable to that of ABCB1 (P-glycoprotein). As an example of the purification strategy via tandem affinity chromatography, we purified ABCC3 (MRP3) whose role in the transport of anticancer drugs, bile acids, and glucuronides has been controversial. The yield of ABCC3 was 3.5 mg/100 g of cells in six independent purifications. Purified ABCC3, activated with PC lipids, exhibited significant ATPase activity with a Vmax of 82 +/- 32 nmol min-1 mg-1. The ATPase activity was stimulated by bile acids and glucuronide conjugates, reaching 170 +/- 28 nmol min-1 mg-1, but was not stimulated by a variety of anticancer drugs. The glucuronide conjugates ethinylestradiol-3-glucuronide and 17beta-estradiol-17-glucuronide stimulated the ATPase with relatively high affinities (apparent Km values of 2 and 3 microM, respectively) in contrast to bile acids (apparent Km values of >130 microM), suggesting that glucuronides are the preferred substrates for this transporter. Overall, the availability of a purification system for the production of large quantities of active transporters presents a major step not only toward understanding the role of ABCC3 but also toward future structure-function analysis of other human ABC transporters.  相似文献   

7.
Multidrug resistance protein 3 (MDR3, ABCB4) is a hepatocellular membrane protein that mediates biliary secretion of phosphatidylcholine. Null mutations in ABCB4 gene give rise to severe early-onset cholestatic liver disease. We have previously shown that the disease-associated mutations p.G68R, p.G228R, p.D459H, and p.A934T resulted in retention of ABCB4 in the endoplasmic reticulum, thus failing to target the plasma membrane. In the present study, we tested the ability of two compounds with chaperone-like activity, 4-phenylbutyrate and curcumin, to rescue these ABCB4 mutants by assessing their effects on subcellular localization, protein maturation, and phospholipid efflux capability. Incubation of transfected cells at a reduced temperature (30°C) or exposure to pharmacological doses of either 4-PBA or curcumin restored cell surface expression of mutants G228R and A934T. The delivery of these mutants to the plasma membrane was accompanied by a switch in the ratio of mature to inmature protein forms, leading to a predominant expression of the mature protein. This effect was due to an improvement in the maturation rate and not to the stabilization of the mature forms. Both mutants were also functionally rescued, displaying bile salt-dependent phospholipid efflux activity after addition of 4-PBA or curcumin. Drug-induced rescue was mutant specific, given neither 4-PBA nor curcumin had an effect on the ABCB4 mutants G68R and A934T. Collectively, these data indicate that the functionality of selected trafficking-defective ABCB4 mutants can be recovered by chemical chaperones through restoration of membrane localization, suggesting a potential treatment for patients carrying such mutations.  相似文献   

8.
ATP-binding cassette (ABC) transporters play a pivotal role in physiology and pathology. We identified and cloned two novel mRNA isoforms (ABCB 5alpha and ABCB 5beta) of the ABC transporter ABCB 5 in human melanoma cells. The deduced ABCB 5alpha protein appears to be an altered splice variant containing only a putative ABC, whereas the ABCB 5beta isoform shares approximately 70% similarity with ABCB1 (MDR1) and has a deduced topological arrangement similar to that of the whole carboxyl terminal half of the ABCB1 gene product, P-glycoprotein, including an intact ABC. Northern blot, real-time PCR, and conventional RT-PCR were used to verify the expression profiles of ABCB 5alpha/beta. We found that the melanomas included among the NCI-60 panel of cell lines preferentially expressed both ABCB 5alpha and ABCB 5beta. However, ABCB 5alpha/beta expression was undetectable in two amelanotic melanomas (M14 and LOX-IMVI). The expression profile of ABCB 5alpha/beta in all of the other melanomas of the panel was confirmed both by RT-PCR and by sequencing. Neither ABCB 5alpha nor ABCB 5beta expression was found in normal tissues such as liver, spleen, thymus, kidney, lung, colon, small intestines or placenta. ABCB 5alpha/beta mRNAs were also expressed in normal melanocytes and in retinal pigment epithelial cells, suggesting that ABCB 5alpha/beta expression is pigment cell-specific and might be involved in melanogenesis. Our findings indicate that expression of ABCB 5alpha/beta might possibly provide two novel molecular markers for differential diagnosis of melanomas and constitute potential molecular targets for therapy of melanomas.  相似文献   

9.
The ABC transporters bile salt export pump (BSEP; encoded by the ABCB11 gene), MDR3 P-glycoprotein (ABCB4), and sterolin 1 and 2 (ABCG5 and ABCG8) are crucial for the excretion of bile salt, phospholipid, and cholesterol, respectively, into the bile of mammals. The current paradigm is that phospholipid excretion mainly serves to protect membranes of the biliary tree against bile salt micelles. Bile salt composition and cytotoxicity, however, differ greatly between species. We investigated whether biliary phospholipid and cholesterol excretion occurs in a primitive species, the little skate, which almost exclusively excretes the sulphated bile alcohol scymnolsulphate. We observed no phospholipid and very little cholesterol excretion into bile of these animals. Conversely, when scymnolsulphate was added to the perfusate of isolated mouse liver perfusions, it was very well capable of driving biliary phospholipid and cholesterol excretion. Furthermore, in an erythrocyte cytolysis assay, scymnolsulphate was found to be at least as cytotoxic as taurocholate. These results demonstrate that the little skate does not have a system for the excretion of phospholipid and cholesterol and that both the MDR3 and the two half-transporter genes, ABCG5 and ABCG8, have evolved relatively late in evolution to mediate biliary lipid excretion. Little skate plasma membranes may be protected against bile salt micelles mainly by their high sphingomyelin content.  相似文献   

10.
The ATP-binding cassette (ABC) transporter superfamily is a large gene family that has been highly conserved throughout evolution. The physiological importance of these membrane transporters is highlighted by the large variety of substrates they transport, and by the observation that mutations in many of them cause heritable diseases in human. Likewise, overexpression of certain ABC transporters, such as P-glycoprotein and members of the multidrug resistance associated protein (MRP) family, is associated with multidrug resistance in various cells and organisms. Understanding the structure and molecular mechanisms of transport of the ABC transporters in normal tissues and their possibly altered function in human diseases requires large amounts of purified and active proteins. For this, efficient expression systems are needed. The methylotrophic yeast Pichia pastoris has proven to be an efficient and inexpensive experimental model for high-level expression of many proteins, including ABC transporters. In the present review, we will summarize recent advances on the use of this system for the expression, purification, and functional characterization of P-glycoprotein and two members of the MRP subfamily.  相似文献   

11.

Background

Inhibition of the transporter-mediated hepatobiliary elimination of bile salts is a putative mechanism for liver toxicity observed with some endothelin receptor antagonists (ERAs).

Methods

Sandwich-cultured human hepatocytes were used to study the hepatobiliary distribution and accumulation of exogenous taurocholate, ERAs and endogenous bile acids. The molecular mechanisms for findings in hepatocytes or clinical observations were further explored using either vesicular assays (efflux transporters) or transfected cell-lines (uptake transporters). Inhibition constants (IC50) were measured for the human hepatobiliary transporters bile salt export pump (BSEP), sodium taurocholate cotransporting polypeptide (NTCP), multidrug resistance protein 2 (MRP2), P-glycoprotein (Pgp), breast cancer resistance protein (BCRP), organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3.

Results

The ERAs showed dose-dependent reductions in exogenous taurocholate cellular accumulation in human hepatocytes, with macitentan having the greatest effect. Consistent with their effects on bile acids, the ERAs inhibited bile transporters. IC50 values for OATP1B1 and OATP1B3 ranged from 2 µM for macitentan to 47 µM for ambrisentan. Macitentan and bosentan also inhibited NTCP with IC50 values of 10 and 36 µM, respectively. Similar to previously reported findings with sitaxsentan, BSEP inhibition was observed for bosentan and macitentan with IC50 values of 42 and 12 µM, respectively. In contrast, ambrisentan showed little or no inhibition of these transporters. Other transporters tested were weakly inhibited by the ERAs. Accumulation in hepatocytes was also a factor in the effects on bile transport. Macitentan demonstrated the greatest accumulation in human hepatocytes (∼100x) followed by sitaxsentan (∼40x), bosentan (∼20x) and ambrisentan (∼2x).

Conclusions

Significant differences in the inhibition of hepatic transporters were observed between the evaluated ERAs in vitro. Macitentan had the highest level of cellular accumulation and caused the greatest effects on bile acid distribution in human hepatocytes followed by sitaxsentan and bosentan. Ambrisentan showed a low potential to affect bile acids.  相似文献   

12.
ABCB4, which is specifically expressed on the canalicular membrane of hepatocytes, exports phosphatidylcholine (PC) into bile. Because SM depletion increases cellular PC content and stimulates PC and cholesterol efflux by ABCA1, a key transporter involved in generation of HDL, we predicted that SM depletion also stimulates PC efflux through ABCB4. To test this prediction, we compared the lipid efflux activity of ABCB4 and ABCA1 under SM depletion induced by two different types of inhibitors for SM synthesis, myriocin and (1R,3S)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide, in human embryonic kidney 293 and baby hamster kidney cells. Unexpectedly, SM depletion exerted opposite effects on ABCB4 and ABCA1, suppressing PC efflux through ABCB4 while stimulating efflux through ABCA1. Both ABCB4 and ABCA1 were recovered from Triton-X-100-soluble membranes, but ABCB4 was mainly recovered from CHAPS-insoluble SM-rich membranes, whereas ABCA1 was recovered from CHAPS-soluble membranes. These results suggest that a SM-rich membrane environment is required for ABCB4 to function. ABCB4 must have evolved to exert its maximum activity in the SM-rich membrane environment of the canalicular membrane, where it transports PC as the physiological substrate.  相似文献   

13.
Multidrug resistance (MDR) has been shown to reduce the effectiveness of chemotherapy. Strategies to overcoming MDR have been widely explored in the last decades, leading to a generation of numerous small molecules targeting ABC and MRP transporters. Among the ABC family, ABCB1 plays key roles in the development of drug resistance and is the most well studied. In this work, we report the discovery of non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) from our structurally diverse in-house compound collection that selectively modulates ABCB1-mediated multidrug resistance. WS-10 enhanced the intracellular accumulation of paclitaxel in SW620/Ad300 cells, but did not affect the expression of ABCB1 Protein and ABCB1 localization. The cellular thermal shift assay (CETSA) showed that WS-10 was able to bind to ABCB1, which could be responsible for the reversal effect of WS-10 toward paclitaxel and doxorubicin in SW620/Ad300 cells. Docking simulations were performed to show the possible binding modes of WS-10 within ABCB1 transporter. To conclude, WS-10 could be used as a template for designing new ABCB1 modulators to overcome ABCB1-mediated multidrug resistance.  相似文献   

14.
In this study, we cloned, expressed and functionally characterized Stronglycentrotus purpuratus (Sp) ATP-binding cassette (ABC) transporters. This screen identified three multidrug resistance (MDR) transporters with functional homology to the major types of MDR transporters found in humans. When overexpressed in embryos, the apical transporters Sp-ABCB1a, ABCB4a, and ABCG2a can account for as much as 87% of the observed efflux activity, providing a robust assay for their substrate selectivity. Using this assay, we found that sea urchin MDR transporters export canonical MDR susbtrates such as calcein-AM, bodipy-verapamil, bodipy-vinblastine, and mitoxantrone. In addition, we characterized the impact of nonconservative substitutions in the primary sequences of drug binding domains of sea urchin versus murine ABCB1 by mutation of Sp-ABCB1a and treatment of embryos with stereoisomeric cyclic peptide inhibitors (QZ59 compounds). The results indicated that two substitutions in transmembrane helix 6 reverse stereoselectivity of Sp-ABCB1a for QZ59 enantiomers compared with mouse ABCB1a. This suggests that subtle changes in the primary sequence of transporter drug binding domains could fine-tune substrate specificity through evolution.  相似文献   

15.
Genetic defects in hepatobiliary transport   总被引:6,自引:0,他引:6  
Bile formation, the exocrine function of the liver, represents a process that is unique to the hepatocyte as a polarized epithelial cell. The generation of bile flow is an osmotic process and largely depends on solute secretion by primary active transporters in the apical membrane of the hepatocyte. In recent years an impressive progress has been made in the discovery of these proteins, most of which belong to the family of ABC transporters. The number of identified ABC transporter genes has been exponentially increasing and the mammalian subfamily now counts at least 52. This development has been of crucial importance for the elucidation of the mechanism of bile formation, and it is therefore not surprising that the development in this field has run in parallel with the discovery of the ABC genes. With the identification of these transporter genes, the background of a number of inherited diseases, which are caused by mutations in these solute pumps, has now been elucidated. We now know that at least six primary active transporters are involved in canalicular secretion of biliary components (MDR1, MDR3, BSEP, MRP2, BCRP and FIC1). Four of these transporter genes are associated with inherited diseases. In this minireview we will shortly describe our present understanding of bile formation and the associated inherited defects.  相似文献   

16.
Multidrug resistance (MDR) has been shown to reduce the effectiveness of chemotherapy. Strategies to overcoming MDR have been widely explored in the last decades, leading to a generation of numerous small molecules targeting ABC and MRP transporters. Among the ABC family, ABCB1 plays key roles in the development of drug resistance and is the most well studied. In this work, we report the discovery of a non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) from our structurally diverse in-house compound collection that selectively modulates ABCB1-mediated multidrug resistance. WS-10 enhanced the intracellular accumulation of paclitaxel in SW620/Ad300 cells, but did not affect the expression of ABCB1 Protein and ABCB1 localization. The cellular thermal shift assay (CETSA) showed that WS-10 was able to bind to ABCB1, which could be responsible for the reversal effect of WS-10 toward paclitaxel and doxorubicin in SW620/Ad300 cells. Docking simulations were performed to show the possible binding modes of WS-10 within ABCB1 transporter. To conclude, WS-10 could be used as a template for designing new ABCB1 modulators to overcome ABCB1-mediated multidrug resistance.  相似文献   

17.
Hydrophilic bile salts, ursodeoxycholate and hyodeoxycholate, have choleretic effects. ABCB4, a member of the ABC transporter family, is essential for the secretion of phospholipids from hepatocytes into bile. In this study, we assessed the effects of taurine- or glycine-conjugated cholate, ursodeoxycholate and hyodeoxycholate on the ABCB4-mediated phosphatidylcholine (PC) efflux using Abcb4 knockout mice and HEK293 cells stably expressing ABCB4. To evaluate the effects of bile salts on bile formation in Abcb4+/+ or Abcb4−/− mice, the bile was collected during intravenous infusion of saline or bile salts. The biliary PC secretion in Abcb4+/+ mice was significantly increased by the infusions of all tested bile salts, especially taurohyodeoxycholate. On the other hand, Abcb4−/− mice exhibited extremely low secretion of PC into bile, which was not altered by bile salt infusions. We also showed that the PC efflux from ABCB4-expressing HEK293 cells was stimulated by taurohyodeoxycholate much more strongly than the other tested bile salts. However, taurohyodeoxycholate did not restore the activities of ABCB4 mutants. Furthermore, light scattering measurements demonstrated a remarkable ability of taurohyodeoxycholate to form mixed micelles with PC. Therefore, the enhancing effect of taurohyodeoxycholate on the ABCB4-mediated PC efflux may be due to the strong mixed micelle formation ability.  相似文献   

18.
ABC转运蛋白超家族结构和功能复杂多样, 包含ABCA-ABCH八个亚家族。ABCB是ABC转运蛋白的一个亚家族, 多数定位于质膜, 少数定位于线粒体膜或叶绿体膜。ABCB与其它生长素转运蛋白(AUX1/LAX、PIN)共同参与调控植物生长素的极性运输, 在植物生长发育的各个阶段发挥作用。此外, ABCB转运蛋白还调控植物的向性运动和重金属抗性等过程。近年来, 随着越来越多植物全基因组测序的完成, ABCB亚家族在禾谷类单子叶植物水稻(Oryza sativa)、玉米(Zea mays)和高粱(Sorghum bicolor)中的生物学功能开始有少量报道, 然而多数ABCB转运蛋白的功能尚未得到阐释。该文对拟南芥(Arabidopsis thaliana)和禾谷类作物ABCB转运蛋白的研究进展进行综述, 以期为全面揭示ABCB亚家族生物学功能提供线索。  相似文献   

19.
ABC转运蛋白超家族结构和功能复杂多样, 包含ABCA-ABCH八个亚家族。ABCB是ABC转运蛋白的一个亚家族, 多数定位于质膜, 少数定位于线粒体膜或叶绿体膜。ABCB与其它生长素转运蛋白(AUX1/LAX、PIN)共同参与调控植物生长素的极性运输, 在植物生长发育的各个阶段发挥作用。此外, ABCB转运蛋白还调控植物的向性运动和重金属抗性等过程。近年来, 随着越来越多植物全基因组测序的完成, ABCB亚家族在禾谷类单子叶植物水稻(Oryza sativa)、玉米(Zea mays)和高粱(Sorghum bicolor)中的生物学功能开始有少量报道, 然而多数ABCB转运蛋白的功能尚未得到阐释。该文对拟南芥(Arabidopsis thaliana)和禾谷类作物ABCB转运蛋白的研究进展进行综述, 以期为全面揭示ABCB亚家族生物学功能提供线索。  相似文献   

20.
Newly synthesized canalicular ectoenzymes and a cell adhesion molecule (cCAM105) have been shown to traffic from the Golgi to the basolateral plasma membrane, from where they transcytose to the apical bile canalicular domain. It has been proposed that all canalicular proteins are targeted via this indirect route in hepatocytes. We studied the membrane targeting of rat canalicular proteins by in vivo [(35)S]methionine metabolic labeling followed by preparation of highly purified Golgi membranes and canalicular (CMVs) and sinusoidal/basolateral (SMVs) membrane vesicles and subsequent immunoprecipitation. In particular, we compared membrane targeting of newly synthesized canalicular ABC (ATP-binding cassette) transporters MDR1, MDR2, and SPGP (sister of P-glycoprotein) with that of cCAM105. Significant differences were observed in metabolic pulse-chase labeling experiments with regard to membrane targeting of these apical proteins. After a chase time of 15 min, cCAM105 appeared exclusively in SMVs, peaked at 1 h, and progressively declined thereafter. In CMVs, cCAM105 was first detected after 1 h and subsequently increased for 3 h. This findings confirm the transcytotic targeting of cCAM105 reported in earlier studies. In contrast, at no time point investigated were MDR1, MDR2, and SPGP detected in SMVs. In CMVs, MDR1 and MDR2 appeared after 30 min, whereas SPGP appeared after 2 h of labeling. In Golgi membranes, each of the ABC transporters peaked at 30 min and was virtually absent thereafter. These data suggest rapid, direct targeting of newly synthesized MDR1 and MDR2 from the Golgi to the bile canaliculus and transient sequestering of SPGP in an intracellular pool en route from the Golgi to the apical plasma membrane. This study provides biochemical evidence for direct targeting of newly synthesized apical ABC transporters from the Golgi to the bile canaliculus in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号