首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
Viperin是近年来发现的具有重要免疫活性的宿主蛋白之一,其在细胞内的表达在病毒感染或干扰素诱导后明显上升,显示出广泛的抗病毒活性。已证实它可以影响许多囊膜病毒在宿主细胞中的组装和释放,但在不同的病毒中所表现的具体抗病毒活性不同。黄病毒属病毒为单股正链具囊膜的RNA病毒,该种属病毒具有相似的结构特征。Viperin蛋白可以抑制多数黄病毒在细胞中的复制。就Viperin抗几种黄病毒属病毒作用机制进行综述,为相关研究提供参考。  相似文献   

2.
Viperin is an antiviral protein that is induced by different viruses, type I interferon, poly(I:C) and lipopolysaccharide, which is localized to the endoplasmic reticulum and lipid droplets. Recently, our knowledge on the mechanism by which viperin inhibits viral replication has strongly increased. Interestingly, it also became clear that viperin can be used by viruses to increase their infectivity. Here, our current knowledge on the induction of viperin and its effect on virus replication will be reviewed.  相似文献   

3.
ISGylation, an ubiquitin-like post-translational modification by ISG15, has been reported to participate in the interferon (IFN)-mediated antiviral response. In this study, we analyzed the functional role of ISGylation in dengue virus 2 (DENV-2) replication. Overexpression of ISG15 was found to significantly suppress the amount of extracellular infectious virus released, while intracellular viral RNA was unaffected. This effect was not observed with a conjugation-defective ISG15 mutant. In addition, extracellular virus infectivity was decreased by ISG15 overexpression. To further clarify the role of ISGylation in the anti-DENV-2 response, we depleted endogenous ISG15 by RNA interference and analyzed the virus production in the absence or presence of type-I IFN. Results showed a significant reduction in extracellular DENV-2 RNA levels for cells treated with IFN, and that these DENV-2 RNA levels could be partially restored by the ISG15 knockdown. Among various DENV-2 proteins, NS3 and NS5 were subjected to the ISGylation. These results demonstrate that IFN-inducible ISGylation suppresses DENV-2 particle release, and that ISG15 is one of the mediators of IFN-induced inhibition of DENV-2 replication. ISG15 therefore functions as a host antiviral factor against DENV-2 infection.  相似文献   

4.
5.
Viperin is an interferon‐induced protein with a broad antiviral activity. This evolutionary conserved protein contains a radical S‐adenosyl‐l ‐methionine (SAM) domain which has been shown in vitro to hold a [4Fe‐4S] cluster. We identified tick‐borne encephalitis virus (TBEV) as a novel target for which human viperin inhibits productionof the viral genome RNA. Wt viperin was found to require ER localization for full antiviral activity and to interact with the cytosolic Fe/S protein assembly factor CIAO1. Radiolabelling in vivo revealed incorporation of 55Fe, indicative for the presence of an Fe‐S cluster. Mutation of the cysteine residues ligating the Fe‐S cluster in the central radical SAM domain entirely abolished both antiviral activity and incorporation of 55Fe. Mutants lacking the extreme C‐terminal W361 did not interact with CIAO1, were not matured, and were antivirally inactive. Moreover, intracellular removal of SAM by ectopic expression of the bacteriophage T3 SAMase abolished antiviral activity. Collectively, our data suggest that viperin requires CIAO1 for [4Fe‐4S] cluster assembly, and acts through an enzymatic, Fe‐S cluster‐ and SAM‐dependent mechanism to inhibit viral RNA synthesis.  相似文献   

6.
Dengue virus nonstructural protein 5 (NS5) is a large multifunctional protein with a central role in viral replication. We previously identified two nuclear localization sequences (NLSs) within the central region of dengue virus type-2 (DENV-2) NS5 ('aNLS' and 'bNLS') that are recognized by the importin alpha/beta and importin beta1 nuclear transporters, respectively. Here, we demonstrate the importance of the kinetics of NS5 nuclear localization to virus production for the first time and show that the aNLS is responsible. Site-specific mutations in the bipartite-type aNLS or bNLS region were introduced into a reporter plasmid encoding green fluorescent protein fused to the N-terminus of DENV-2 NS5, as well as into DENV-2 genomic length complementary DNA. Mutation of basic residues in the highly conserved region of the bNLS did not affect nuclear import of NS5. In contrast, mutations in either basic cluster of the aNLS decreased NS5 nuclear accumulation and reduced virus production, with the greatest reduction observed for mutation of the second cluster (K(387)K(388)K(389)); mutagenesis of both clusters abolished NS5 nuclear import and DENV-2 virus production completely. The latter appeared to relate to the impaired ability of virus lacking nuclear-localizing NS5, as compared with wild-type virus expressing nuclear-localizing NS5, to reduce interleukin-8 production as part of the antiviral response. The results overall indicate that NS5 nuclear localization through the aNLS is integral to viral infection, with significant implications for other flaviviruses of medical importance, such as yellow fever and West Nile viruses.  相似文献   

7.
Viperin, an evolutionarily highly conserved interferon-inducible multifunctional protein, has previously been reported to exhibit antiviral activity against a wide range of DNA and RNA viruses. Utilizing the complete nucleotide coding sequence data of fish viperin antiviral genes, and employing the maximum likelihood-based codon substitution models, the present study reports the pervasive role of positive selection in the evolution of viperin antiviral protein in fishes. The overall rate of nonsynonymous (dN) to synonymous (dS) substitutions (dN/dS) for the three functional domains of viperin (N-terminal, central domain and C-terminal) were 1.1, 0.12, and 0.24, respectively. Codon-by-codon substitution analyses have revealed that while most of the positively selected sites were located at the N-terminal amphipathic α-helix domain, few amino acid residues at the C-terminal domain were under positive selection. However, none of the sites in the central domain were under positive selection. These results indicate that, although viperin is evolutionarily highly conserved, the three functional domains experienced differential selection pressures. Taken together with the results of previous studies, the present study suggests that the persistent antagonistic nature of surrounding infectious viral pathogens might be the likely cause for such adaptive evolutionary changes of certain amino acids in fish viperin antiviral protein.  相似文献   

8.
The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.  相似文献   

9.
Cytomegalovirus infection is associated with cytoskeletal alterations and cell swelling (cytomegaly), which have been attributed to the viral mitochondria-localized inhibitor of apoptosis (vMIA) protein. In a recent issue of Science, Seo et?al. (2011) showed that the antiviral host protein viperin is co-opted to function with vMIA for facilitating infection.  相似文献   

10.
Dengue virus (DENV) nonstructural protein 1 (NS1) is a highly conserved 46-kDa protein that contains 2 glycosylation sites (Asn-130 and Asn-207) and 12 conserved cysteine (Cys) residues. Here, we performed site-directed mutagenesis to generate systematic mutants of viral strain TSV01. The results of the subsequent analysis showed that an alanine substitution at the second N-linked glycan Asn-207 in NS1 delayed viral RNA synthesis, reduced virus plaque size, and weakened the cytopathic effect. Three mutants at Cys sites (Cys-4, Cys-55, Cys-291) and a C-terminal deletion (ΔC) mutant significantly impaired RNA synthesis, and consequently abolished viral growth, whereas alanine mutations at Asn-130 and Glu-173 resulted in phenotypes that were similar to the wild-type (WT) virus. Further analysis showed that the Asn-207 mutation slightly delayed viral replication. These results suggest that the three conserved disulfide bonds and the second N-linked glycan in NS1 are required for DENV-2 replication.  相似文献   

11.
Chan YL  Chang TH  Liao CL  Lin YL 《Journal of virology》2008,82(21):10455-10464
Viperin is identified as an antiviral protein induced by interferon (IFN), viral infections, and pathogen-associated molecules. In this study, we found that viperin is highly induced at the RNA level by Japanese encephalitis virus (JEV) and Sindbis virus (SIN) and that viperin protein is degraded in JEV-infected cells through a proteasome-dependent mechanism. Promoter analysis revealed that SIN induces viperin expression in an IFN-dependent manner but that JEV by itself activates the viperin promoter through IFN regulatory factor-3 and AP-1. The overexpression of viperin significantly decreased the production of SIN, but not of JEV, whereas the proteasome inhibitor MG132 sustained the protein level and antiviral effect of viperin in JEV-infected cells. Knockdown of viperin expression by RNA interference also enhanced the replication of SIN, but not that of JEV. Our results suggest that even though viperin gene expression is highly induced by JEV, it is negatively regulated at the protein level to counteract its antiviral effect. In contrast, SIN induces viperin through the action of IFN, and viperin exhibits potent antiviral activity against SIN.  相似文献   

12.
Mx and Viperin are important interferon‐stimulated genes that mediate the antiviral immune response. In this study, we cloned the Mx and viperin genes from Dabry's sturgeon (Acipenser dabryanus). The Mx cDNA sequence contained an open reading frame (ORF) of 1,449 nucleotides, encoding a putative protein of 392 aa, which is significantly shorter than other animal Mx proteins. Although the similarity and identity were low between sturgeon Mx and other animal Mx proteins, sturgeon Mx contains the conserved tripartite GTP binding motif and a dynamin family signature. The sturgeon Mx gene contains eight exons split by seven introns. The sturgeon viperin cDNA sequence contained an ORF of 1,047 bp encoding a putative protein of 349 aa, which is relatively well conserved among species. Sturgeon viperin proteins show 82% similarity with those of Xiphophorus maculatus platyfish and Poecilia formosa Amazon molly. The sturgeon viperin gene has a six exon/five intron structure with the same size of second, third, fourth, and fifth exons between different species. The expression of Mx and viperin was detectable in all tissues examined, with the highest expression in skin for Mx and in peripheral blood for viperin. After mock infection using polyinosine‐polycytidylic acid, Mx and viperin showed significantly upregulated expression in primary spleen leukocytes from 3 hr to 72 hr. Lipopolysaccharide could also induce their expression. These results suggested Mx and Viperin could play a vital antiviral role in the innate immune system of Dabry's sturgeon.  相似文献   

13.
14.
TLR3 functions as a viral nucleic acid sentinel activated by dsRNA viruses and virus replication intermediates within intracellular vesicles. To explore the spectrum of genes induced in human astrocytes by TLR3, we used a microarray approach and the analog polyriboinosinic polyribocytidylic acid (pIC) as ligand. As expected for TLR activation, pIC induced a wide array of cytokines and chemokines known for their role in inflammatory responses, as well as up-regulation of the receptor itself. The data also showed activation of a broad spectrum of antiviral response genes. To determine whether pIC induced an antiviral state in astrocytes, a pseudotyped HIV viral particle, vesicular stomatitis virus g-env-HIV-1, was used. pIC significantly abrogated HIV-1 replication, whereas IL-1, which also potently activates astrocytes, did not. One of the most highly up-regulated genes on microarray was the protein viperin/cig5. We found that viperin/cig5 expression was dependent on IFN regulatory factor 3 and NF-kappaB signaling, and that repetitive stimulation with pIC, but not IL-1, further increased expression. Viperin induction could also be substantially inhibited by neutralizing Abs to IFN-beta, as could HIV-1 replication. To explore a role for viperin in IFN-beta-mediated inhibition of HIV-1, we used an RNA interference (RNAi) approach. RNAi directed against viperin, but not a scrambled RNAi, significantly inhibited viperin expression, and also significantly reversed pIC-induced inhibition of HIV-1 replication. We conclude that viperin contributes to the antiviral state induced by TLR3 ligation in astrocytes, supporting a role for astrocytes as part of the innate immune response against infection in the CNS.  相似文献   

15.
Interferons elicit antiviral responses by inducing the expression of a large number of host cell genes. In this issue of Cell Host & Microbe, Wang and colleagues report that the interferon-inducible protein viperin inhibits influenza A virus release by impairing the formation of cholesterol-enriched plasma membrane microdomains, or lipid rafts. Viperin appears to disrupt lipid rafts by suppressing the activity of farnesyl diphosphate synthase, a key enzyme in isoprenoid biosynthesis.  相似文献   

16.

Background

The relationships between the infecting dengue serotype, primary and secondary infection, viremia and dengue severity remain unclear. This cross-sectional study examined these interactions in adult patients hospitalized with dengue in Ha Noi.

Methods and Findings

158 patients were enrolled between September 16 and November 11, 2008. Quantitative RT-PCR, serology and NS1 detection were used to confirm dengue infection, determine the serotype and plasma viral RNA concentration, and categorize infections as primary or secondary. 130 (82%) were laboratory confirmed. Serology was consistent with primary and secondary infection in 34% and 61%, respectively. The infecting serotype was DENV-1 in 42 (32%), DENV-2 in 39 (30%) and unknown in 49 (38%). Secondary infection was more common in DENV-2 infections (79%) compared to DENV-1 (36%, p<0.001). The proportion that developed dengue haemorrhagic fever (DHF) was 32% for secondary infection compared to 18% for primary infection (p = 0.14), and 26% for DENV-1 compared to 28% for DENV-2. The time until NS1 and plasma viral RNA were undetectable was shorter for DENV-2 compared to DENV-1 (p≤0.001) and plasma viral RNA concentration on day 5 was higher for DENV-1 (p = 0.03). Plasma viral RNA concentration was higher in secondary infection on day 5 of illness (p = 0.046). We didn''t find an association between plasma viral RNA concentration and clinical severity.

Conclusion

Dengue is emerging as a major public health problem in Ha Noi. DENV-1 and DENV-2 were the prevalent serotypes with similar numbers and clinical presentation. Secondary infection may be more common amongst DENV-2 than DENV-1 infections because DENV-2 infections resulted in lower plasma viral RNA concentrations and viral RNA concentrations were higher in secondary infection. The drivers of dengue emergence in northern Viet Nam need to be elucidated and public health measures instituted.  相似文献   

17.
Flavivirus nonstructural (NS) proteins are involved in RNA replication and modulation of the host antiviral response; however, evidence is mounting that some NS proteins also have essential roles in virus assembly. Kunjin virus (KUN) NS2A is a small, hydrophobic, transmembrane protein that is part of the replication complex and inhibits interferon induction. Previously, we have shown that an isoleucine (I)-to-asparagine (N) substitution at position 59 of the NS2A protein blocked the production of secreted virus particles in cells electroporated with viral RNA carrying this mutation. We now show that prolonged incubation of mutant KUN NS2A-I59N replicon RNA, in an inducible BHK-derived packaging cell line (expressing KUN structural proteins C, prM, and E), generated escape mutants that rescued the secretion of infectious virus-like particles. Sequencing identified three groups of revertants that included (i) reversions to wild-type, hydrophobic Ile, (ii) pseudorevertants to more hydrophobic residues (Ser, Thr, and Tyr) at codon 59, and (iii) pseudorevertants retaining Asn at NS2A codon 59 but containing a compensatory mutation (Thr-to-Pro) at NS2A codon 149. Engineering hydrophobic residues at NS2A position 59 or the compensatory T149P mutation into NS2A-I59N replicon RNA restored the assembly of secreted virus-like particles in packaging cells. T149P mutation also rescued virus production when introduced into the full-length KUN RNA containing an NS2A-I59N mutation. Immunofluorescence and electron microscopy analyses of NS2A-I59N replicon-expressing cells showed a distinct lack of virus-induced membranes normally present in cells expressing wild-type replicon RNA. The compensatory mutation NS2A-T149P restored the induction of membrane structures to a level similar to those observed during wild-type replication. The results further confirm the role of NS2A in virus assembly, demonstrate the importance of hydrophobic residues at codon 59 in this process, implicate the involvement of NS2A in the biogenesis of virus-induced membranes, and suggest a vital role for the virus-induced membranes in virus assembly.  相似文献   

18.
Dengue (DEN) is a mosquito-borne viral disease that has become an increasing economic and health burden for the tropical and subtropical world. The lack of an appropriate animal model of DEN has greatly impeded the study of its pathogenesis and the development of vaccines/antivirals. We recently reported a DEN virus 2 (DENV-2) strain (D2Y98P) that lethally infects immunocompromised AG129 mice, resulting in organ damage or dysfunction and increased vascular permeability, hallmarks of severe DEN in patients (G. K. Tan et al., PLoS Negl. Trop. Dis. 4:e672, 2010). Here we report the identification of one critical virulence determinant of strain D2Y98P. By mutagenesis, we showed that a Phe-to-Leu alteration at amino acid position 52 in nonstructural protein NS4B completely abolished the pathogenicity of the D2Y98P virus, as evidenced by a lack of lethality and the absence of histological signs of disease, which correlated with reduced viral titers and intact vascular permeability. Conversely, a Leu-to-Phe alteration at position 52 of NS4B in nonvirulent DENV-2 strain TSV01 led to 80% lethality and increased viremia. The NS4B(Phe52) viruses displayed enhanced RNA synthesis in mammalian cells but not in mosquito cells. The increased viral RNA synthesis was independent of the ability of NS4B to interfere with the host type I interferon response. Overall, our results demonstrate that Phe at position 52 in NS4B confers virulence in mice on two independent DENV-2 strains through enhancement of viral RNA synthesis. In addition to providing further insights into the functional role of NS4B protein, our findings further support a direct relationship between viral loads and DEN pathogenesis in vivo, consistent with observations in DEN patients.  相似文献   

19.
Viperin is an evolutionarily conserved interferon-inducible protein that localizes to the endoplasmic reticulum (ER) and inhibits a number of DNA and RNA viruses. In this study, we report that viperin specifically localizes to the cytoplasmic face of the ER and that an amphipathic α-helix at its N terminus is necessary for the ER localization of viperin and sufficient to promote ER localization of a reporter protein, dsRed. Overexpression of intact viperin but not the amphipathic α-helix fused to dsRed induced crystalloid ER. Consistent with other proteins that induce crystalloid ER, viperin self-associates, and it does so independently of the amphipathic α-helix. Viperin expression also affected the transport of soluble but not membrane-associated proteins. Expression of intact viperin or an N-terminal α-helix-dsRed fusion protein significantly reduced secretion of soluble alkaline phosphatase and reduced its rate of ER-to-Golgi trafficking. Similarly, viperin expression inhibited bulk protein secretion and secretion of endogenous α1-antitrypsin and serum albumin from HepG2 cells. Converting hydrophobic residues in the N-terminal α-helix to acidic residues partially or completely restored normal transport of soluble alkaline phosphatase, suggesting that the extended amphipathic nature of the N-terminal α-helical domain is essential for inhibiting protein secretion.Type I interferons are the first line of defense against viral infections. The significance of the interferon pathway is illustrated by the susceptibility of interferon signaling mutants to infection and by viral mechanisms that counteract this pathway (1, 2). Although many genes are induced upon interferon stimulation, very few of these genes have been functionally characterized. Viperin is highly induced by both Type I and II interferons and has a broad range of antiviral activity, inhibiting DNA viruses, notably human cytomegalovirus (3); RNA viruses such as influenza, hepatitis C virus (HCV),2 and alphaviruses (4-6); and retroviruses such as human immunodeficiency virus (7). Upon expression, viperin localizes to the endoplasmic reticulum (ER), where it interacts with farnesyl-diphosphate synthase, an enzyme involved in lipid biosynthesis. This interaction appears to result in the disruption of lipid raft microdomains and prevention of influenza virus from budding from the plasma membrane (4).Although recent studies have explored the antiviral functions of viperin, the general biochemical properties of this protein remain largely undefined. Viperin is highly conserved across both mammals and lower vertebrates and shares homology with the MoaA family of “radical S-adenosylmethionine” enzymes that bind Fe-S clusters (3, 8). In addition to a putative Fe-S cluster-binding domain, viperin has a 42-amino acid residue N-terminal amphipathic α-helix, and similar domains in other proteins have been shown to bind membranes and induce membrane curvature (9, 10).In this study, we examined the role of the viperin N-terminal α-helical domain in both cellular localization and ER membrane morphology and analyzed the biochemical properties of viperin. We discovered that viperin forms dimers and induces a tightly ordered, visually striking array of ER membranes, known as crystalloid ER(11-13), upon overexpression. In addition, viperin expression impedes the secretion of a variety of soluble proteins. Although the N-terminal amphipathic α-helix is not sufficient to induce crystalloid ER formation, it is both necessary and sufficient to mediate ER localization and to inhibit protein secretion.  相似文献   

20.
Interferons initiate the host antiviral response by inducing a number of genes, most with no defined antiviral function. Here we show that the interferon-induced protein viperin inhibits influenza A virus release from the plasma membrane of infected cells. Viperin expression altered plasma membrane fluidity by affecting the formation of lipid rafts, which are detergent-resistant membrane microdomains known to be the sites of influenza virus budding. Intracellular interaction of viperin with farnesyl diphosphate synthase (FPPS), an enzyme essential for isoprenoid biosynthesis, decreased the activity of the enzyme. Overexpression of FPPS reversed viperin-mediated inhibition of virus production and restored normal membrane fluidity, and reduction of FPPS levels by siRNA inhibited virus release and replication, indicating that the FPPS interaction underlies viperin's effects. These findings suggest that targeting the release stage of the life cycle may affect the replication of many enveloped viruses. Furthermore, FPPS may be an attractive target for antiviral therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号