首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human immunodeficiency virus, type 1 (HIV-1)-encoded Rev protein is essential for the expression of late viral mRNAs. Rev forms a large organized multimeric protein-protein complex on the Rev response element of these viral mRNA species and transports them from the nucleus to the cytoplasm, exploiting the CRM1-mediated cellular machinery. Here we report the selection of a nanobody, derived from a llama heavy-chain only antibody, that efficiently blocks the assembly of Rev multimers. The nanobody inhibits HIV-1 replication in cells and specifically suppresses the Rev-dependent expression of partially spliced and unspliced HIV-1 RNA. In HIV-susceptible cells, this nanobody thus has potential as an effective anti-HIV agent using genetic immunization strategies. Its binding site was mapped to Rev residues Lys-20 and Tyr-23 located in the N-terminal α-helical multimerization domain. In the presence of this nanobody, we observed an accumulation of dimeric Rev species, supporting a head-to-head/tail-to-tail molecular model for Rev assembly. The results indicate that the oligomeric assembly of Rev follows an ordered stepwise process and identify a new epitope within Rev that could guide strategies for the development of novel HIV inhibitors.  相似文献   

2.
The expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the action of the viral trans-regulatory protein Rev. Rev is a nuclear shuttle protein that directly binds to its cis-acting Rev response element (RRE) RNA target sequence. Subsequent oligomerization of Rev monomers on the RRE and interaction of Rev with a cellular cofactor(s) result in the cytoplasmic accumulation of RRE-containing viral mRNAs. Moreover, Rev by itself is exported from the nucleus to the cytoplasm. Although it has been demonstrated that Rev multimerization is critically required for Rev activity and hence for HIV-1 replication, the number of Rev monomers required to form a trans-activation-competent complex on the RRE is unknown. Here we report a systematic analysis of the putative multimerization domains within the Rev trans-activator protein. We identify the amino acid residues which are part of the proposed single hydrophobic surface patch in the Rev amino terminus that mediates intermolecular interactions. Furthermore, we show that the expression of a multimerization-deficient Rev mutant blocks HIV-1 replication in a trans-dominant (dominant-negative) fashion.  相似文献   

3.
M H Malim  B R Cullen 《Cell》1991,65(2):241-248
Expression of the structural proteins of HIV-1 requires the direct interaction of the viral Rev trans-activator with its cis-acting RNA target sequence, the Rev response element or RRE. Here, we demonstrate that this specific RNA-binding event is, as expected, mediated by the conserved arginine-rich motif of Rev. However, we also show that amino acid residues located proximal to this basic domain that are critical for in vivo Rev function are dispensable for sequence-specific binding to the RRE. Instead, these sequences are required for the multimerization of Rev on the viral RRE target sequence. The observation that Rev function requires the sequential binding of multiple Rev molecules to the RRE provides a biochemical explanation for the observed threshold effect for Rev function in vivo and suggests a molecular model for the high incidence of latent infection by HIV-1.  相似文献   

4.
5.
The Rev proteins of the related but distinct human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) display incomplete functional reciprocity. One possible explanation for this observation is that HIV-2 Rev is unable to interact with the HIV-1 Rev-response element (RRE1). However, an analysis of the biological activity of chimeric proteins derived from HIV-1 and HIV-2 Rev reveals that this target specificity does not map to the Rev RNA binding domain but is instead primarily determined by sequences known to mediate Rev multimerization. Both HIV-1 and HIV-2 Rev are shown to bind the RRE1 in vitro with identical RNA sequence specificity. The observation that HIV-2 Rev can inhibit RRE1-dependent HIV-1 Rev function in trans indicates that the direct interaction of HIV-2 Rev with the RRE1 also occurs in vivo. These data suggest that HIV-2 Rev forms a protein-RNA complex with the RRE1 that leads to only minimal Rev activity. It is hypothesized that this low level of Rev function results from the incomplete and/or aberrant multimerization of HIV-2 Rev on this heterologous RNA target sequence.  相似文献   

6.
The human immunodeficiency virus type 1 (HIV-1) Rev protein is essential for the virus because it promotes nuclear export of alternatively processed mRNAs, and Rev is also linked to translation of viral mRNAs and genome encapsidation. Previously, the human DEAD-box helicase DDX1 was suggested to be involved in Rev functions, but this relationship is not well understood. Biochemical studies of DDX1 and its interactions with Rev and model RNA oligonucleotides were carried out to investigate the molecular basis for association of these components. A combination of gel-filtration chromatography and circular dichroism spectroscopy demonstrated that recombinant DDX1 expressed in Escherichia coli is a well-behaved folded protein. Binding assays using fluorescently labeled Rev and cell-based immunoprecipitation analysis confirmed a specific RNA-independent DDX1-Rev interaction. Additionally, DDX1 was shown to be an RNA-activated ATPase, wherein Rev-bound RNA was equally effective at stimulating ATPase activity as protein-free RNA. Gel mobility shift assays further demonstrated that DDX1 forms complexes with Rev-bound RNA. RNA silencing of DDX1 provided strong evidence that DDX1 is required for both Rev activity and HIV production from infected cells. Collectively, these studies demonstrate a clear link between DDX1 and HIV-1 Rev in cell-based assays of HIV-1 production and provide the first demonstration that recombinant DDX1 binds Rev and RNA and has RNA-dependent catalytic activity.  相似文献   

7.

Background

The HIV-1 Rev regulatory protein binds as an oligomeric complex to viral RNA mediating nuclear export of incompletely spliced and non-spliced viral mRNAs encoding the viral structural proteins. However, the biological significance of the obligatory complex formation of Rev upon the viral RNA is unclear.

Results

The activity of various fusion proteins based on the negative oligomerization-defect Rev mutant M4 was tested using Rev dependent reporter constructs. An artificial M4 mutant dimer and an M4 mutant containing an extra basic domain from the HTLV-I Rex protein exhibited nearly full activity when compared to wild type Rev.

Conclusion

Rev dimerization appears to be required to expose free basic domains whilst the Rev oligomeric complex remains bound to viral RNA via other basic domains.  相似文献   

8.
The HIV-1 Rev and integrase (IN) proteins control important functions in the viral life cycle. We have recently discovered that the interaction between these proteins results in inhibition of IN enzymatic activity. Peptides derived from the Rev and IN binding interfaces have a profound effect on IN catalytic activity: Peptides derived from Rev inhibit IN, while peptides derived from IN stimulate IN activity by inhibiting the Rev-IN interaction. This inhibition leads to multi integration, genomic instability and specific death of virus-infected cells. Here we used protein docking combined with refinement and energy function ranking to suggest a structural model for the Rev-IN complex. Our results indicate that a Rev monomer binds IN at two sites that match our experimental binding data: (1) IN residues 66-80 and 118-128; (2) IN residues 174-188. According to our model, IN binds Rev and its cellular cofactor, lens epithelium derived growth factor (LEDGF), through overlapping interfaces. This supports previous observations that IN is regulated by a tight interplay between Rev and LEDGF. Rev may bind either the IN dimer or tetramer. Accordingly, Rev is suggested to inhibit IN by two possible mechanisms: (i) shifting the oligomerization equilibrium of IN from an active dimer to an inactive tetramer; (ii) displacing LEDGF from IN, resulting in inhibition of IN binding to the viral DNA. Our model is expected to contribute to the development of lead compounds that inhibit the Rev-IN interaction and thus lead to multi-integration of viral cDNA and consequently to apoptosis of HIV-1 infected cells.  相似文献   

9.
Venken T  Daelemans D  De Maeyer M  Voet A 《Proteins》2012,80(6):1633-1646
The HIV Rev protein mediates the nuclear export of viral mRNA, and is thereby essential for the production of late viral proteins in the replication cycle. Rev forms a large organized multimeric protein-protein complex for proper functioning. Recently, the three-dimensional structures of a Rev dimer and tetramer have been resolved and provide the basis for a thorough structural analysis of the binding interaction. Here, molecular dynamics (MD) and binding free energy calculations were performed to elucidate the forces thriving dimerization and higher order multimerization of the Rev protein. It is found that despite the structural differences between each crystal structure, both display a similar behavior according to our calculations. Our analysis based on a molecular mechanics-generalized Born surface area (MM/GBSA) and a configurational entropy approach demonstrates that the higher order multimerization site is much weaker than the dimerization site. In addition, a quantitative hot spot analysis combined with a mutational analysis reveals the most contributing amino acid residues for protein interactions in agreement with experimental results. Additional residues were found in each interface, which are important for the protein interaction. The investigation of the thermodynamics of the Rev multimerization interactions performed here could be a further step in the development of novel antiretrovirals using structure based drug design. Moreover, the variability of the angle between each Rev monomer as measured during the MD simulations suggests a role of the Rev protein in allowing flexibility of the arginine rich domain (ARM) to accommodate RNA binding.  相似文献   

10.
11.
A method was developed to assess the functional significance of a sequence motif in yeast Upf3p, a protein required for nonsense-mediated mRNA decay (NMD). The motif lies at the edge of the Upf3p-Upf2p interaction domain, but at the same time resembles the canonical leucine-rich nuclear export sequence (NES) found in proteins that bind Crm1p exportin. To test the function of the putative NES, site-directed mutations that cause substitutions of conserved NES-A residues were first selected to identify hypermorphic alleles. Next, a portable Crm1p-binding NES from HIV-1 Rev protein that functions in yeast was fused en masse to the C-terminus of variant Upf3 proteins using loxP sites recognized by bacterial cre-recombinase. Finally, variant Upf3-Rev proteins that were functional in NMD were selected and examined for the types of amino acid substitutions present in NES-A. The mutational analysis revealed that amino acid substitutions in the Upf3 NES impair both nuclear export and the Upf2p-Upf3p interaction, both of which are required for Upf3p to function in NMD. The method described in this report could be modified for the genetic analysis of a variety of portable protein domains. Published: October 1, 2004.  相似文献   

12.
The Rex trans-regulatory protein of human T-cell leukemia virus type 1 (HTLV-1) is required for the nuclear export of incompletely spliced and unspliced viral mRNAs and is therefore essential for virus replication. Rex is a nuclear phosphoprotein that directly binds to its cis-acting Rex response element RNA target sequence and constantly shuttles between the nucleus and cytoplasm. Moreover, Rex induces nuclear accumulation of unspliced viral RNA. Three protein domains which mediate nuclear import-RNA binding, nuclear export, and Rex oligomerization have been mapped within the 189-amino-acid Rex polypeptide. Here we identified a different region in the carboxy-terminal half of Rex which is also required for biological activity. In inactive mutants with mutations that map within this region, as well as in mutants that are deficient in Rex-specific multimerization, Rex trans activation could be reconstituted by fusion to a heterologous leucine zipper dimerization interface. The intracellular trafficking capabilities of wild-type and mutant Rex proteins reveal that biologically inactive and multimerization-deficient Rex mutants are still efficiently translocated from the nucleus to the cytoplasm. This observation indicates that multimerization is essential for Rex function but is not required for nuclear export. Finally, we are able to provide an improved model of the HTLV-1 Rex domain structure.  相似文献   

13.
14.
Rev, a viral regulatory protein of HIV-1, binds through its arginine-rich domain to the Rev-responsive element (RRE), a secondary structure in transcribed HIV-1 RNA. Binding of Rev to RRE mediates export of singly spliced or unspliced mRNAs from the nucleus to the cytoplasm. It has been previously shown that a certain arginine-rich peptide exhibits not only RRE-binding ability but also cell permeability and antagonism of CXCR4, one of the major coreceptors of HIV-1. Here we designed and synthesized arginine-rich peptides derived from the RNA-binding domain of Rev (Rev34-50) and evaluated their anti-HIV-1 activities. Rev34-50-A4C, comprising Rev34-50 with AAAAC at the C-terminus to increase the α-helicity, inhibited HIV-1 entry by CXCR4 antagonism and virus production in persistently HIV-1-infected PM1-CCR5 cells. Interestingly, similar motif of human lymphotropic virus type I Rex (Rex1-21) also exerted moderate anti-HIV-1 activity. These results indicate that arginine-rich peptide, Rev34-50-A4C exerts dual antagonism against CXCR4 and Rev.  相似文献   

15.
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a very promising new class of anti-HIV-1 agents that exhibit a multimodal mechanism of action by allosterically modulating IN multimerization and interfering with IN-lens epithelium-derived growth factor (LEDGF)/p75 binding. Selection of viral strains under ALLINI pressure has revealed an A128T substitution in HIV-1 IN as a primary mechanism of resistance. Here, we elucidated the structural and mechanistic basis for this resistance. The A128T substitution did not affect the hydrogen bonding between ALLINI and IN that mimics the IN-LEDGF/p75 interaction but instead altered the positioning of the inhibitor at the IN dimer interface. Consequently, the A128T substitution had only a minor effect on the ALLINI IC50 values for IN-LEDGF/p75 binding. Instead, ALLINIs markedly altered the multimerization of IN by promoting aberrant higher order WT (but not A128T) IN oligomers. Accordingly, WT IN catalytic activities and HIV-1 replication were potently inhibited by ALLINIs, whereas the A128T substitution in IN resulted in significant resistance to the inhibitors both in vitro and in cell culture assays. The differential multimerization of WT and A128T INs induced by ALLINIs correlated with the differences in infectivity of HIV-1 progeny virions. We conclude that ALLINIs primarily target IN multimerization rather than IN-LEDGF/p75 binding. Our findings provide the structural foundations for developing improved ALLINIs with increased potency and decreased potential to select for drug resistance.  相似文献   

16.
The Rev proteins of the human immunodeficiency virus (HIV) are necessary for expression of viral structural gene products. Site-directed mutations were made within the HIV-2 rev gene to identify functional domains. We observed that similar to HIV-1 Rev, the HIV-2 Rev protein was phosphorylated, albeit to a much lesser extent than was HIV-1 Rev. We also found that like HIV-1 Rev, HIV-2 Rev localized to the nucleus, with a marked accumulation in the nucleolus. Mutations within a stretch of basic residues prevented both nuclear and nucleolar localization. Furthermore, mutant Rev proteins able to localize in the nucleus but unable to localize in the nucleolus were nonfunctional.  相似文献   

17.
The eukaryotic initiation factor 5A (eIF-5A) has been identified as an essential cofactor for the HIV-1 trans-activator protein Rev. Rev plays a key role in the complex regulation of HIV-1 gene expression and thereby in the generation of infectious virus particles. Expression of eIF-5A is vital for Rev function, and inhibition of this interaction leads to a block of the viral replication cycle. In humans, four different eIF-5A genes have been identified. One codes for the eIF-5A protein and the other three are pseudogenes. Using a panel of somatic rodent—human cell hybrids in combination with fluorescence in situ hybridization analysis, we show that the four genes map to threedifferent chromosomes. The coding eIF-5A gene (EIF5A) maps to 17p12–p13, and the three pseudogenes EIF5AP1, EIF5AP2, and EIF5AP3 map to 10q23.3, 17q25, and 19q13.2, respectively. This is the first localization report for a eukaryotic cofactor for a regulatory HIV-1 protein.  相似文献   

18.
The C-terminal domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a dimer that binds to DNA in a nonspecific manner. The structure of the minimal region required for DNA binding (IN220–270) has been solved by nuclear magnetic resonance spectroscopy. The overall fold of the C-terminal domain of HIV-1 IN is similar to those of Src homology region 3 domains. Based on the structure of IN220–270, we studied the role of 15 amino acid residues potentially involved in DNA binding and oligomerization by mutational analysis. We found that two amino acid residues, arginine 262 and leucine 234, contribute to DNA binding in the context of IN220–270, as indicated by protein-DNA UV cross-link analysis. We also analyzed mutant proteins representing portions of the full-length IN protein. Amino acid substitution of residues located in the hydrophobic dimer interface, such as L241A and L242A, results in the loss of oligomerization of IN; consequently, the levels of 3′ processing, DNA strand transfer, and intramolecular disintegration are strongly reduced. These results suggest that dimerization of the C-terminal domain of IN is important for correct multimerization of IN.  相似文献   

19.
Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein–protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号