首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Kajla MK  Shi L  Li B  Luckhart S  Li J  Paskewitz SM 《PloS one》2011,6(5):e19649

Background

Plasmodium requires an obligatory life stage in its mosquito host. The parasites encounter a number of insults while journeying through this host and have developed mechanisms to avoid host defenses. Lysozymes are a family of important antimicrobial immune effectors produced by mosquitoes in response to microbial challenge.

Methodology/Principal Findings

A mosquito lysozyme was identified as a protective agonist for Plasmodium. Immunohistochemical analyses demonstrated that Anopheles gambiae lysozyme c-1 binds to oocysts of Plasmodium berghei and Plasmodium falciparum at 2 and 5 days after infection. Similar results were observed with Anopheles stephensi and P. falciparum, suggesting wide occurrence of this phenomenon across parasite and vector species. Lysozyme c-1 did not bind to cultured ookinetes nor did recombinant lysozyme c-1 affect ookinete viability. dsRNA-mediated silencing of LYSC-1 in Anopheles gambiae significantly reduced the intensity and the prevalence of Plasmodium berghei infection. We conclude that this host antibacterial protein directly interacts with and facilitates development of Plasmodium oocysts within the mosquito.

Conclusions/Significance

This work identifies mosquito lysozyme c-1 as a positive mediator of Plasmodium development as its reduction reduces parasite load in the mosquito host. These findings improve our understanding of parasite development and provide a novel target to interrupt parasite transmission to human hosts.  相似文献   

3.

Background

An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus.

Methods

Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin.

Results

The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed.

Conclusion

This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations.  相似文献   

4.
5.
6.

Background

Research aimed at developing vaccines against infectious diseases generally seeks to induce robust immune responses to immunodominant antigens. This approach has led to a number of efficient bacterial and viral vaccines, but it has yet to do so for parasitic pathogens. For malaria, a disease of global importance due to infection by Plasmodium protozoa, immunization with radiation-attenuated sporozoites uniquely leads to long lasting sterile immunity against infection. The circumsporozoite protein (CSP), an important component of the sporozoite''s surface, remains the leading candidate antigen for vaccines targeting the parasite''s pre-erythrocytic stages. Difficulties in developing CSP-based vaccines that reproduce the levels of protection afforded by radiation-attenuated sporozoites have led us to question the role of CSP in the acquisition of sterile immunity. We have used a parasite transgenic for the CSP because it allowed us to test whether a major immunodominant Plasmodium antigen is indeed needed for the induction of sterile protective immunity against infection.

Methodology/Main Findings

We employed a P. berghei parasite line that expresses a heterologous CSP from P. falciparum in order to assess the role of the CSP in the protection conferred by vaccination with radiation-attenuated P. berghei parasites. Our data demonstrated that sterile immunity could be obtained despite the absence of immune responses specific to the CSP expressed by the parasite used for challenge.

Conclusions

We conclude that other pre-erythrocytic parasite antigens, possibly hitherto uncharacterised, can be targeted to induce sterile immunity against malaria. From a broader perspective, our results raise the question as to whether immunodominant parasite antigens should be the favoured targets for vaccine development.  相似文献   

7.

Background

The Plasmodium protein Cell-traversal protein for ookinetes and sporozoites (CelTOS) plays an important role in cell traversal of host cells in both, mosquito and vertebrates, and is required for successful malaria infections. CelTOS is highly conserved among the Plasmodium species, suggesting an important functional role across all species. Therefore, targeting the immune response to this highly conserved protein and thus potentially interfering with its biological function may result in protection against infection even by heterologous species of Plasmodium.

Methodology/Principal Findings

To test this hypothesis, we developed a recombinant codon-harmonized P. falciparum CelTOS protein that can be produced to high yields in the E. coli expression system. Inbred Balb/c and outbred CD-1 mice were immunized with various doses of the recombinant protein adjuvanted with Montanide ISA 720 and characterized using in vitro and in vivo analyses.

Conclusions/Significance

Immunization with PfCelTOS resulted in potent humoral and cellular immune responses and most importantly induced sterile protection against a heterologous challenge with P. berghei sporozoites in a proportion of both inbred and outbred mice. The biological activity of CelTOS-specific antibodies against the malaria parasite is likely linked to the impairment of sporozoite motility and hepatocyte infectivity. The results underscore the potential of this antigen as a pre-erythrocytic vaccine candidate and demonstrate for the first time a malaria vaccine that is cross-protective between species.  相似文献   

8.
Xu W  Cornel AJ  Leal WS 《PloS one》2010,5(10):e15403
  相似文献   

9.
10.
11.
Gupta L  Noh JY  Jo YH  Oh SH  Kumar S  Noh MY  Lee YS  Cha SJ  Seo SJ  Kim I  Han YS  Barillas-Mury C 《PloS one》2010,5(11):e15410

Background

Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes.

Methodology/Principal Findings

We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold.

Conclusion

There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection.  相似文献   

12.
13.

Background

In Plasmodium, meiosis occurs in diploid zygotes as they develop into haploid motile ookinetes inside the mosquito. Further sporogonic development involves transformation of ookinetes into oocysts and formation of infective sporozoites.

Methodology/Principal Findings

Reverse genetics was employed to examine the role of the meiotic specific recombinase Dmc1, a bacterial RecA homolog during sporogony in Plasmodium berghei. PbDmc1 knockout (KO) parasites showed normal asexual growth kinetics compared to WT parasites; however oocyst formation in mosquitoes was reduced by 50 to 80%. Moreover, the majority of oocysts were retarded in their growth and were smaller in size compared to WT parasites. Only a few Dmc1 KO parasites completed maturation resulting in formation of fewer sporozoites which were incapable of infecting naive mice or hepatocytes in vitro. PbDmc1 KO parasites were shown to be approximately 18 times more sensitive to Bizelesin, a DNA alkylating drug compared to WT parasites as reflected by impairment of oocyst formation and sporogonic development in the mosquito vector.

Conclusions/Significance

Our findings suggest that PbDmc1 plays a critical role in malaria transmission biology.  相似文献   

14.

Background

OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage.

Methodology/Principal Findings

OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OXR1 regulates the basal levels of catalase (CAT) and glutathione peroxidase (Gpx) expression, two enzymes involved in detoxification of hydrogen peroxide, giving new insight into the mechanism of action of OXR1. Gene silencing experiments indicate that the Jun Kinase (JNK) gene acts upstream of OXR1 and also regulates expression of CAT and GPx. Both OXR1 and JNK genes are required for adult female mosquitoes to survive chronic oxidative stress. OXR1 silencing decreases P. berghei oocyst formation. Unexpectedly, JNK silencing has the opposite effect and enhances Plasmodium infection in the mosquito, suggesting that JNK may also mediate some, yet to be defined, antiparasitic response.

Conclusion

The JNK pathway regulates OXR1 expression and OXR1, in turn, regulates expression of enzymes that detoxify reactive oxygen species (ROS) in Anopheles gambiae. OXR1 silencing decreases Plasmodium infection in the mosquito, while JNK silencing has the opposite effect and enhances infection.  相似文献   

15.

Background

Anopheles gambiae is a major vector of malaria and lymphatic filariasis. The arthropod-host interactions occurring at the skin interface are complex and dynamic. We used a global approach to describe the interaction between the mosquito (infected or uninfected) and the skin of mammals during blood feeding.

Methods

Intravital video microscopy was used to characterize several features during blood feeding. The deposition and movement of Plasmodium berghei sporozoites in the dermis were also observed. We also used histological techniques to analyze the impact of infected and uninfected feedings on the skin cell response in naive mice.

Results

The mouthparts were highly mobile within the skin during the probing phase. Probing time increased with mosquito age, with possible effects on pathogen transmission. Repletion was achieved by capillary feeding. The presence of sporozoites in the salivary glands modified the behavior of the mosquitoes, with infected females tending to probe more than uninfected females (86% versus 44%). A white area around the tip of the proboscis was observed when the mosquitoes fed on blood from the vessels of mice immunized with saliva. Mosquito feedings elicited an acute inflammatory response in naive mice that peaked three hours after the bite. Polynuclear and mast cells were associated with saliva deposits. We describe the first visualization of saliva in the skin by immunohistochemistry (IHC) with antibodies directed against saliva. Both saliva deposits and sporozoites were detected in the skin for up to 18 h after the bite.

Conclusion

This study, in which we visualized the probing and engorgement phases of Anopheles gambiae blood meals, provides precise information about the behavior of the insect as a function of its infection status and the presence or absence of anti-saliva antibodies. It also provides insight into the possible consequences of the inflammatory reaction for blood feeding and pathogen transmission.  相似文献   

16.
17.

Background

Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism.

Methodology/Principal Findings

We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection.

Conclusion

We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号