首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A structural event during the evolution of a myocardial infarction (MI) is left ventricular (LV) remodeling. The mechanisms that contribute to early changes in LV myocardial remodeling in the post-MI period remain poorly understood. Matrix metalloproteinases (MMPs) contribute to tissue remodeling in several disease states. Whether and to what degree MMP activation occurs within the myocardial interstitium after acute MI remains to be determined. Adult pigs (n = 15) were instrumented to measure regional myocardial function and interstitial MMP levels within regions served by the circumflex and left anterior descending arteries. Regional function was measured by sonomicrometry, and interstitial MMP levels were determined by selective microdialysis and zymography as well as by MMP interstitial fluorogenic activity. Measurements were performed at baseline and sequentially for up to 3 h after ligation of the obtuse marginals of the circumflex artery. Regional fractional shortening fell by over 50% in the MI region but remained unchanged in the remote region after coronary occlusion. Release of soluble MMPs, as revealed by zymographic activity of myocardial interstitial samples, increased by 2 h post-MI. The increased zymographic activity after MI was consistent with MMP-9. Myocardial interstitial MMP fluorogenic activity became detectable within the ischemic region as early as 10 min after coronary occlusion and significantly increased after 1 h post-MI. MMP fluorogenic activity remained unchanged from baseline values in the remote region. The present study demonstrated that myocardial MMP activation can occur within the MI region in the absence of reperfusion. These unique results suggest that MMP release and activation occurs within the ischemic myocardial interstitium in the early post-MI period.  相似文献   

2.
The development of left ventricular (LV) hypertrophy (LVH) can be affected by diet manipulation. Concentric LVH resulting from pressure overload can be worsened by feeding rats with a high-fructose diet. Eccentric LVH is a different type of hypertrophy and is associated with volume overload (VO) diseases. The impact of an abnormal diet on the development of eccentric LVH and on ventricular function in chronic VO is unknown. This study therefore examined the effects of a fructose-rich diet on LV eccentric hypertrophy, ventricular function, and myocardial metabolic enzymes in rats with chronic VO caused by severe aortic valve regurgitation (AR). Wistar rats were divided in four groups: sham-operated on control diet (SC; n = 13) or fructose-rich diet (SF; n = 13) and severe aortic regurgitation fed with the same diets [aortic regurgitation on control diet (ARC), n = 16, and aortic regurgitation on fructose-rich diet (ARF), n = 13]. Fructose-rich diet was started 1 wk before surgery, and the animals were euthanized 9 wk later. SF and ARF had high circulating triglycerides. ARC and ARF developed significant LV eccentric hypertrophy after 8 wk as expected. However, ARF developed more LVH than ARC. LV ejection fraction was slightly lower in the ARF compared with ARC. The increased LVH and decreased ejection fraction could not be explained by differences in hemodynamic load. SF, ARC, and ARF had lower phosphorylation levels of the AMP kinase compared with SC. A fructose-rich diet worsened LV eccentric hypertrophy and decreased LV function in a model of chronic VO caused by AR in rats. Normal animals fed the same diet did not develop these abnormalities. Hypertriglyceridemia may play a central role in this phenomenon as well as AMP kinase activity.  相似文献   

3.
The cytokine tumor necrosis factor (TNF)-alpha has been causally linked to left ventricular (LV) remodeling, but the molecular basis for this effect is unknown. Matrix metalloproteinases (MMPs) have been implicated in cardiac remodeling and can be regulated by TNF-alpha. This study tested the central hypothesis that administration of a TNF-alpha blocking protein would prevent the induction of MMPs and alter the course of myocardial remodeling in developing LV failure. Adult dogs were randomly assigned to the following groups: 1) chronic pacing (250 beats/min, 28 days, n = 12), 2) chronic pacing with concomitant administration of a TNF-alpha blocking protein (TNF block) using a soluble p75 TNF receptor fusion protein (TNFR:Fc; administered at 0.5 mg/kg twice a week subcutaneously, n = 7), and 3) normal controls (n = 10). LV end-diastolic volume increased from control with chronic pacing (83 +/- 12 vs. 118 +/- 10 ml, P < 0.05) and was reduced with TNF block (97 +/- 9 ml, P < 0.05). MMP zymographic levels (92 kDa, pixels) increased from control with chronic pacing (36,848 +/- 9,593 vs. 87,247 +/- 12,912, P < 0.05) and was normalized by TNF block. Myocardial MMP-9 and MMP-13 levels by immunoblot increased with chronic pacing relative to controls (130 +/- 10% and 118 +/- 6%, P < 0.05) and was normalized by TNF block. These results provide evidence to suggest that TNF-alpha contributes to the myocardial remodeling process in evolving heart failure through the local induction of specific MMPs.  相似文献   

4.
Endothelin (ET) A (ET(A)) receptors activate matrix metalloproteinases (MMP). Since endothelin-1 (ET) is increased in myocardium late postmyocardial infarction (MI), we hypothesized that stimulation of ET(A) receptors contributes to activation of myocardial MMPs late post-MI. Three days post-MI, rats were randomized to treatment with the ET(A)-selective receptor antagonist sitaxsentan (n = 12) or a control group (n = 12). Six weeks later, there were rightward shifts of the left ventricular (LV) end-diastolic and end-systolic pressure-volume relationships, as measured ex vivo by the isovolumic Langendorff technique. Both shifts were markedly attenuated by sitaxsentan. In LV myocardium remote from the infarct, the activities of MMP-1, MMP-2, and MMP-9 were increased in the post-MI group, and the increases were prevented by sitaxsentan treatment. Expression of tissue inhibitor of MMP-1 was decreased post-MI, and the decrease was prevented by sitaxsentan treatment. Chronic post-MI remodeling is associated with activation of MMPs in myocardium remote from the infarct. Inhibition of ET(A) receptors prevents MMP activation and LV dilation, suggesting that ET, acting via the ET(A) receptor, contributes to chronic post-MI remodeling by its effects on MMP activity.  相似文献   

5.
Chronic volume overload (VO) on the left ventricle (LV) augments redox stress and activates matrix metalloproteinase (MMP) which causes the endocardial endothelial-myocyte (EM) disconnection leading to myocardial contractile dysfunction. VO-induced MMP-9 activation impairs cardiac functions, in part by endothelial endocardial apoptosis, but the role of MMP-9 on EM functions remains obscure. We conjecture that chronic VO activates MMP-9 and causes EM uncoupling. Arteriovenous fistula (AVF) was created in genetically identical wild type (WT) mice (FVB/NJ) and MMP-9 knockout mice (MMP-9KO, FVB.Cg-MMP9(tm1Tvu)/J). Sham-operated mice were used as controls. Before experimentation the phenotype analysis of MMP-9KO mice was carried out. In-gel-gelatin zymography for MMP-9 activation was performed on LV homogenates. The EM functions were determined on LV rings using tissue myobath. We report a decrease in MMP-9 activity in left ventricular myocardial extracts in MMP-9 deficient mice after AVF. The responses to drugs affecting cardiac functions (acetylcholine (Ach), nitroprusside and bradykinin) were attenuated in AVF mice suggesting the impairment of EM coupling. Interestingly, the EM functions were restored in the MMP-9 deficient mice after AVF. We suggest a direct cause-and-effect relationship between MMP-9 activation and EM uncoupling in LV myocardium after chronic VO and the possible involvement of MMP-9 in myocardial contractile performance.  相似文献   

6.
The matrix metalloproteinases (MMPs) play a pivotal role in adverse left ventricular (LV) myocardial remodeling. The transmembrane protein extracellular MMP inducer (EMMPRIN) causes increased MMP expression in vitro, and elevated levels occur in patients with LV failure. However, the direct consequences of a prolonged increase in the myocardial expression of EMMPRIN in vivo remained unexplored. Cardiac-restricted EMMPRIN expression (EMMPRINexp) was constructed in mice using the full-length human EMMPRIN gene ligated to the myosin heavy chain promoter, which yielded approximately a twofold increase in EMMPRIN compared with that of the age/strain-matched wild-type (WT) mice; EMMPRINexp (n=27) and WT (n=33) mice were examined at 3.2+/-0.1 or at 13.3+/-0.5 mo of age (n=43 and 26, respectively). LV end-diastolic volume (EDV) was similar in young EMMPRINexp and WT mice (54+/-2 vs. 57+/-3 microl), but LV ejection fraction (EF) was reduced (51+/-1 vs. 57+/-1%; P<0.05). In old EMMPRINexp mice, LV EDV was increased compared with WT mice values (76+/-3 vs. 58+/-3 microl; P<0.05) and LV EF was significantly reduced (45+/-1 vs. 57+/-2%; P<0.05). In EMMPRINexp old mice, myocardial MMP-2 and membrane type-1 MMP levels were increased by >50% from WT values (P<0.05) and were accompanied by a twofold higher collagen content (P<0.05). Persistent myocardial EMMPRINexp in aging mice caused increased levels of both soluble and membrane type MMPs, fibrosis, and was associated with adverse LV remodeling. These findings suggest that EMMPRIN is an upstream signaling pathway that can play a mechanistic role in adverse remodeling within the myocardium.  相似文献   

7.
Alterations in matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) have been implicated in adverse left ventricular (LV) remodeling after myocardial infarction (MI). However, the direct mechanistic role of TIMPs in the post-MI remodeling process has not been completely established. The goal of this project was to define the effects of altering endogenous MMP inhibitory control through combined genetic and pharmacological approaches on post-MI remodeling in mice. This study examined the effects of MMP inhibition (MMPi) with PD-166793 (30 mg.kg(-1).day(-1)) on LV geometry and function (conductance volumetry) after MI in wild-type (WT) mice and mice deficient in the TIMP-1 gene [TIMP-1 knockout (TIMP1-KO)]. At 3 days after MI (coronary ligation), mice were randomized into four groups: WT-MI/MMPi (n = 10), TIMP1-KO-MI/MMPi (n = 10), WT-MI (n = 22), and TIMP1-KO-MI (n = 23). LV end-diastolic volume (EDV) and ejection fraction were determined 14 days after MI. Age-matched WT (n = 20) and TIMP1-KO (n = 28) mice served as reference controls. LVEDV was similar under control conditions in WT and TIMP1-KO mice (36 +/- 2 and 40 +/- 2 microl, respectively) but was greater in TIMP1-KO-MI than in WT-MI mice (48 +/- 2 vs. 61 +/- 5 microl, P < 0.05). LVEDV was reduced from MI-only values in WT-MI/MMPi and TIMP1-KO-MI/MMPi mice (42 +/- 2 and 36 +/- 2 microl, respectively, P < 0.05) but was reduced to the greatest degree in TIMP1-KO mice (P < 0.05). LV ejection fraction was reduced in both groups after MI and increased in TIMP1-KO-MI/MMPi, but not in WT-MI/MMPi, mice. These unique results demonstrated that myocardial TIMP-1 plays a regulatory role in post-MI remodeling and that the accelerated myocardial remodeling induced by TIMP-1 gene deletion can be pharmacologically "rescued" by MMP inhibition. These results define the importance of local endogenous control of MMP activity with respect to regulating LV structure and function after MI.  相似文献   

8.
The objective of this study was to investigate the effect a nonselective endothelin-1 (ET-1) receptor antagonist (bosentan) had on the acute myocardial remodeling process including left ventricular (LV) mast cells and matrix metalloproteinase (MMP) activity secondary to volume overload. Additionally, we investigated the overall functional outcome of preventative endothelin receptor antagonism during 14 days of chronic volume overload. LV tissue from sham-operated (Sham), untreated-fistula (Fist), and bosentan (100 mg.kg(-1).day(-1))-treated animals (Fist + Bos) was analyzed for mast cell density, MMP activity, and myocardial collagen volume fraction at 1 and 5 days after the creation of an aortocaval fistula. When compared with untreated fistulas, bosentan treatment prevented the marked increase in LV mast cell density at 1 day postfistula (3.1 +/- 0.3 vs. 1.3 +/- 0.3 LV mast cells/mm2, Fist vs. Fist + Bos, P 相似文献   

9.
Matrix metalloproteinase-2 (MMP-2) is prominently overexpressed both after myocardial infarction (MI) and in heart failure. However, its pathophysiological significance in these conditions is still unclear. We thus examined the effects of targeted deletion of MMP-2 on post-MI left ventricular (LV) remodeling and failure. Anterior MI was produced in 10- to 12-wk-old male MMP-2 knockout (KO) and sibling wild-type (WT) mice by ligating the left coronary artery. By day 28, MI resulted in a significant increase in mortality in association with LV cavity dilatation and dysfunction. The MMP-2 KO mice had a significantly better survival rate than WT mice (56% vs. 85%, P < 0.05), despite a comparable infarct size (50 +/- 3% vs. 51 +/- 3%, P = not significant), heart rate, and arterial blood pressure. The KO mice had a significantly lower incidence of LV rupture (10% vs. 39%, P < 0.05), which occurred within 7 days of MI. The KO mice exerted less LV cavity dilatation and improved fractional shortening after MI by echocardiography. The LV zymographic MMP-2 level significantly increased in WT mice after coronary artery ligation; however, this was completely prevented in KO mice. In contrast, the increase in the LV zymographic MMP-9 level after MI was similar between KO and WT mice. MMP-2 activation is therefore considered to contribute to an early cardiac rupture as well as late LV remodeling after MI. The inhibition of MMP-2 activation may therefore be a potentially useful therapeutic strategy to manage post-MI hearts.  相似文献   

10.
Accumulation of oxidized extracellular matrix between endothelium and muscle is an important risk factor in the endothelium-myocytes uncoupling in congestive heart failure. Although ventricular remodeling is accompanied by increased matrix metalloproteinase (MMP)-9 activity, it is unclear whether MMP-9 plays a role in endothelial apoptosis in chronic volume overload congestive heart failure. We tested the hypothesis that, in chronic volume overload, myocardial dysfunction involves endocardial endothelial (EE) apoptosis in response to MMP-9 activation, extracellular matrix accumulation, and endothelium-myocytes uncoupling. Arteriovenous fistula (AVF) was created in control (FVB/NJ) and MMP-9 knockout (MMP-9KO; FVB.Cg-MMP9(tm1Tvu)/J) mice. Sham surgery was used as control. Mice were grouped as follows: wild type, n = 3 (sham control); MMP-9KO, n = 3 (sham); AVF, n = 3; and MMP-9KO + AVF (n = 3). Heart function was analyzed by M-mode and Doppler echocardiography, and with a pressure-tipped Millar catheter placed in the left ventricle of anesthetized mice 8 wk after AVF. Apoptosis was detected by measuring caspase-3, transferase-mediated dUTP nick-end labeling (TUNEL), and CD-31 by immunolabeling. Protease-activated receptors-1, connexin-43, and a disintegrin and MMP-12 (ADAM-12) expression were measured by Western blot analyses. MMP-2 and MMP-9 expression were measured by quantitative RT-PCR. Compared with control, AVF caused an increase in left ventricle end diastolic pressure and decrease in -dP/dt. In contrast, in the MMP-9KO + AVF group, these variables were changed toward control levels. Increased EE apoptosis (caspase-3 activation and TUNEL/CD-31 colabeling) in AVF mice was prevented in the MMP-9KO + AVF group. Protease-activated receptor-1, connexin-43, and ADAM-12 were induced in AVF. MMP-9 gene ablation ameliorated the induction. The results suggest that impaired cardiac function in volume overload is associated with EE apoptosis, cardiac remodeling, and endothelium-myocytes uncoupling in response to MMP-9 activation.  相似文献   

11.
To examine whether cardiac hypertrophy is associated with changes in beta-adrenoceptor signal transduction mechanisms, pressure overload (PO) was induced by occlusion of the abdominal aorta and volume overload (VO) by creation of an aortocaval shunt for 4 and 24 wk in rats. After hemodynamic assessment of the animals, the left ventricular (LV) particulate fraction was isolated for measurement of beta(1)-adrenoceptors and adenylyl cyclase activity, and cardiomyocytes were isolated for monitoring of the intracellular Ca(2+) concentration. Although PO and VO produced cardiac hypertrophy and increased LV end-diastolic pressure at 4 wk, cardiac function was increased in animals subjected to PO but remained unaltered in animals subjected to VO. Cardiac hypertrophy and increased LV end-diastolic pressure were associated with depressed cardiac function at 24 wk of PO or VO, but clinical signs of congestive heart failure were evident only in animals subjected to VO. Isoproterenol-induced increases in cardiac function, activation of adenylyl cyclase activity, and increase in intracellular Ca(2+) concentration, as well as beta(1)-adrenoceptor density, were unaltered by PO at 4 wk, augmented by VO at 4 wk, and attenuated by PO and VO at 24 wk. These results suggest that alterations in beta(1)-adrenoceptor signal transduction are dependent on the type and stage of cardiac hypertrophy.  相似文献   

12.
Osteopontin (OPN) plays an important role in left ventricular (LV) remodeling after myocardial infarction (MI) by promoting collagen synthesis and accumulation. This study tested the hypothesis that MMP inhibition modulates post-MI LV remodeling in mice lacking OPN. Wild-type (WT) and OPN knockout (KO) mice were treated daily with MMP inhibitor (PD166793, 30 mg/kg/day) starting 3 days post-MI. LV functional and structural remodeling was measured 14 days post-MI. Infarct size was similar in WT and KO groups with or without MMP inhibition. M-mode echocardiography showed greater increase in LV end-diastolic (LVEDD) and end-systolic diameters (LVESD) and decrease in percent fractional shortening (%FS) and ejection fraction in KO-MI versus WT-MI. MMP inhibition decreased LVEDD and LVESD, and increased %FS in both groups. Interestingly, the effect was more pronounced in KO-MI group versus WT-MI (P < 0.01). MMP inhibition significantly decreased post-MI LV dilation in KO-MI group as measured by Langendorff-perfusion analysis. MMP inhibition improved LV developed pressures in both MI groups. However, the improvement was significantly higher in KO-MI group versus WT-MI (P < 0.05). MMP inhibition increased heart weight-to-body weight ratio, myocyte cross-sectional area, fibrosis and septal wall thickness only in KO-MI. Percent apoptotic myocytes in the non-infarct area was not different between the treatment groups. Expression and activity of MMP-2 and MMP-9 in the non-infarct area was higher in KO-MI group 3 days post-MI. MMP inhibition reduced MMP-2 activity in KO-MI with no effect on the expression of TIMP-2 and TIMP-4 14 days post-MI. Thus, activation of MMPs contributes to reduced fibrosis and LV dysfunction in mice lacking OPN.  相似文献   

13.
Vagal nerve stimulation has been suggested to ameliorate left ventricular (LV) remodeling in heart failure. However, it is not known whether and to what degree vagal nerve stimulation affects matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) in myocardium, which are known to play crucial roles in LV remodeling. We therefore investigated the effects of electrical stimulation of efferent vagal nerve on myocardial expression and activation of MMPs and TIMPs in a rabbit model of myocardial ischemia-reperfusion (I/R) injury. Anesthetized rabbits were subjected to 60 min of left coronary artery occlusion and 180 min of reperfusion with (I/R-VS, n = 8) or without vagal nerve stimulation (I/R, n = 7). Rabbits not subjected to coronary occlusion with (VS, n = 7) or without vagal stimulation (sham, n = 7) were used as controls. Total MMP-9 protein increased significantly after left coronary artery occlusion in I/R-VS and I/R to a similar degree compared with VS and sham values. Endogenous active MMP-9 protein level was significantly lower in I/R-VS compared with I/R. TIMP-1 mRNA expression was significantly increased in I/R-VS compared with the I/R, VS, and sham groups. TIMP-1 protein was significantly increased in I/R-VS and VS compared with the I/R and sham groups. Cardiac microdialysis technique demonstrated that topical perfusion of acetylcholine increased dialysate TIMP-1 protein level, which was suppressed by coperfusion of atropine. Immunohistochemistry demonstrated a strong expression of TIMP-1 protein in cardiomyocytes around the dialysis probe used to perfuse acetylcholine. In conclusion, in a rabbit model of myocardial I/R injury, vagal nerve stimulation induced TIMP-1 expression in cardiomyocytes and reduced active MMP-9.  相似文献   

14.
15.
Tumor necrosis factor-alpha (TNF-alpha) plays a pathophysiological role in the development and progression of heart failure. Matrix metalloproteinase (MMP)-2 is involved in extracellular matrix remodeling. Recent evidence suggests a protective role for this protease against tissue inflammation. Although MMP-2 is upregulated in the failing heart, little is known about its pathophysiological role. We thus hypothesized that ablation of the MMP-2 gene could affect cardiac remodeling and failure in TNF-alpha-induced cardiomyopathy. We crossed transgenic mice with cardiac-specific overexpression of TNF-alpha (TG) with MMP-2 knockout (KO) mice. Four groups of male and female mice were studied: wild-type (WT) with wild MMP-2 (WT/MMP(+/+)), WT with MMP-2 KO (WT/MMP(-/-)), TNF-alpha TG with wild MMP-2 (TG/MMP(+/+)), and TG with MMP-2 KO (TG/MMP(-/-)). The upregulation of MMP-2 zymographic activity in TG/MMP(+/+) mice was completely abolished in TG/MMP(-/-) mice, and other MMPs and tissue inhibitors of metalloproteinase were comparable between groups. Survival was shorter for male TG/MMP(-/-) than TG/MMP(+/+) mice. Female TG/MMP(-/-) mice were more severely affected than TG/MMP(+/+) mice with diminished cardiac function. Myocardial TNF-alpha and other proinflammatory cytokines were increased in TG/MMP(+/+) mice, and this increase was similarly observed in TG/MMP(-/-) mice. The extent of myocardial infiltrating cells including macrophages was greater in TG/MMP(-/-) than in TG/MMP(+/+) mice. Selective ablation of the MMP-2 gene reduces survival and exacerbates cardiac failure in association with the increased level of myocardial inflammation. MMP-2 may play a cardioprotective role in the pathogenesis of cytokine-induced cardiomyopathy.  相似文献   

16.
目的:观察ghrelin对心肌梗死(MI)大鼠心肌重塑和心脏功能的影响,并探讨其可能的机制。方法:应用冠状动脉结扎术创建大鼠MI模型,并设立假手术组作为对照;造模成功后每天2次注射ghrelin(100μg/kg),持续4周,以此作为MI-ghrelin组,并以每天注射生理盐水的MI大鼠作为MI-生理盐水组。检测和比较各组大鼠左心室重塑和血流动力学的改变情况;非梗死心肌中白介素(IL)-1β、肿瘤坏死因子-α(TNF-α)、基质金属蛋白酶(MMP)-2、MMP-9 mRNA和蛋白的表达;梗死边界心肌细胞的凋亡情况。结果:Ghrelin可使心肌梗死后的MI大鼠降低的缩短分数(FS)、左室内压最大变化率均显著下降(dP/dtmax)、疤痕厚度明显升高,增加左室舒张末压(LVEDP)、左室收缩末内径(LVESD)、左室舒张末期内径(LVEDD)、梗死边界心肌细胞的凋亡指数显著降低。此外,ghrelin可抑制心肌梗死后的MI大鼠非梗死心肌中白介素(IL)-1β、肿瘤坏死因子-α(TNF-α)、质金属蛋白酶(MMP)-2和MMP-9的mRNA和蛋白的表达。结论:Ghrelin可缓解MI后大鼠LV功能紊乱及心室重塑,这可能与其抑制炎症反应及基质金属蛋白酶的表达有关。  相似文献   

17.
Degradation of the extracellular matrix proteins by matrix metalloproteinases (MMP) is an important regulatory step in the vascular remodeling process. Recent studies demonstrated that ETA receptors regulate cardiac MMP activity and fibrosis in DOCA-salt hypertension. However, little is known about endothelin (ET)-1 regulation of vascular MMP activity in hypertension. Thus early changes in ET-1-mediated regulation of MMP activity were measured in borderline hypertensive rats that develop impaired vasorelaxation and hypertension with chronic exposure to stress. Experiments were performed after 10 days of exposure to the behavioral stressor, air-jet stress, but before the onset of stress-induced hypertension. Study groups were 1) control (n = 8); 2) air-jet stress for 10 days (n = 8); 3) control plus ETA antagonist ABT-627 (n = 4), and 4) air-jet stress plus ETA antagonist (n = 4). MMP activity in the thoracic aorta was assessed by gelatin zymography. MMP protein and tissue ET-1 levels were evaluated by immunohistochemistry, and ET receptor density was determined by immunoblotting. Exposure to stress caused a twofold increase in plasma ET-1 levels (P < 0.05), and there was increased ET-1 staining at the tissue level. Total MMP activity and expression of MMP-2 and MMP-9 were increased in the stress group. ETA receptor antagonism prevented the increase in MMP expression and activation in the stress group. These results provide evidence that the MMP system is activated before the development of hypertension and ET-1 mediates these early events in vascular remodeling.  相似文献   

18.
A clear association between obesity and heart failure exists and a significant role for leptin, the product of the obese gene, has been suggested. One aspect of myocardial remodeling which characterizes heart failure is a disruption in the balance of extracellular matrix synthesis and degradation. Here we investigated the effects of leptin on matrix metalloproteinase (MMP) activity, tissue inhibitor of metalloproteinase (TIMP) expression, as well as collagen synthesis in HL-1 cardiac muscle cells. Gelatin zymographic analysis of MMP activity in conditioned media showed that leptin enhanced MMP-2 activity in a dose- and time-dependent manner. Leptin is known to stimulate phosphorylation of p38 MAPK in cardiac cells and utilization of the p38 MAPK inhibitor, SB203580, demonstrated that this kinase also plays a role in regulating several extracellular matrix components, such that inhibition of p38 MAPK signaling prevented the leptin-induced increase in MMP-2 activation. We also observed that leptin enhanced collagen synthesis determined by both proline incorporation and picrosirius red staining of conditioned media. Pro-collagen type-I and pro-collagen type-III expression, measured by real-time PCR and Western blotting were also increased by leptin, effects which were again attenuated by SB203580. In summary, these results demonstrate the potential for leptin to play a role in mediating myocardial ECM remodeling and that the p38 MAPK pathway plays an important role in mediating these effects.  相似文献   

19.
Tetracycline is a powerful tool for controlling the expression of specific transgenes (TGs) in various tissues, including heart. In these mouse systems, TG expression is repressed/enhanced by adding doxycycline (Dox) to the diet. However, Dox has been shown to attenuate matrix metalloproteinase (MMP) expression and activity in various tissues, and MMP inactivation mitigates left ventricular (LV) remodeling in animal models of heart failure. Therefore, we examined the influence of Dox on LV remodeling and MMP expression in mice after transverse aortic constriction (TAC). One month after TAC, cardiac hypertrophy (99% vs. 67%) and the proportion of mice exhibiting congestive heart failure (CHF, 74% vs. 32%) were higher in the TAC + Dox group than in the TAC group (P < 0.05). These differences were no longer seen 2 mo after TAC, although LV was more severely dilated in TAC + Dox mice than in TAC mice (P < 0.05). One month after TAC, the increase in brain natriuretic peptide and beta-myosin heavy chain mRNA levels was 1.6 and 1.7 times higher, respectively, in TAC + Dox mice than in TAC mice (P < 0.01). MMP-2 gelatin zymographic activity increased 1.9- and 2.4-fold in TAC and TAC + Dox mice, respectively (P < 0.01 and P < 0.05 relative to respective sham-operated animals), but the difference between TAC + Dox and TAC mice did not reach statistical significance. Dox did not significantly alter TAC-associated perivascular and interstitial myocardial fibrosis. These findings demonstrate that Dox accelerates the onset of cardiac hypertrophy and the progression to CHF following TAC in mice. Accordingly, care should be taken when designing and interpreting studies based on TG mouse models of LV hypertrophy using the tetracycline-regulated (tet)-on/tet-off system.  相似文献   

20.
Myocardial remodeling after myocardial infarction (MI) is associated with increased levels of the matrix metalloproteinases (MMPs). Levels of two MMP species, MMP-2 and MMP-9, are increased after MI, and transgenic deletion of these MMPs attenuates post-MI left ventricular (LV) remodeling. This study characterized the spatiotemporal patterns of gene promoter induction for MMP-2 and MMP-9 after MI. MI was induced in transgenic mice in which the MMP-2 or MMP-9 promoter sequence was fused to the beta-galactosidase reporter, and reporter level was assayed up to 28 days after MI. Myocardial localization with respect to cellular sources of MMP-2 and MMP-9 promoter induction was examined. After MI, LV diameter increased by 70% (P < 0.05), consistent with LV remodeling. beta-Galactosidase staining in MMP-2 reporter mice was increased by 1 day after MI and increased further to 64 +/- 6% of LV epicardial area by 7 days after MI (P < 0.05). MMP-2 promoter activation occurred in fibroblasts and myofibroblasts in the MI region. In MMP-9 reporter mice, promoter induction was detected after 3 days and peaked at 7 days after MI (53 +/- 6%, P < 0.05) and was colocalized with inflammatory cells at the peri-infarct region. Although MMP-2 promoter activation was similarly distributed in the MI and border regions, activation of the MMP-9 promoter was highest at the border between the MI and remote regions. These unique findings visually demonstrated that activation of the MMP-2 and MMP-9 gene promoters occurs in a distinct spatial relation with reference to the MI region and changes in a characteristic time-dependent manner after MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号