首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT We tested whether pelagic light and nutrient availability, metabolism, organic pools and CO2-supersaturation were related to lake size and surrounding forest cover in late summer–autumn measurements among 64 small (0.02–20 ha), shallow seepage lakes located in nutrient-rich, calcareous moraine soils in North Zealand, Denmark. We found a strong implicit scaling to lake size as light availability increased significantly with lake size while nutrient availability, phytoplankton biomass and dissolved organic matter declined. Forest lakes had significantly stronger net heterotrophic traits than open lakes as higher values were observed for light attenuation above and in the water, dissolved organic matter, pelagic community respiration (R) relative to maximum gross primary production (R/GPP) and CO2-supersaturation. Total-phosphorus was the main predictor of phytoplankton biomass (Chl) despite a much weaker relationship than observed in previous studies of larger lakes. Maximum gross primary production increased with algal biomass and decreased with dissolved organic matter, whereas community respiration increased with dissolved organic matter and particularly with gross primary production. These results suggest that exogenous organic matter supplements primary production as an energy source to heterotrophs in these small lakes, and particularly so in forest lakes experiencing substantial shading from the forest and dissolved humic material. This suggestion is supported by 20–30-fold CO2 supersaturation in the surface water of the smallest forest lakes and more than sixfold supersaturation in 75% of all measurements making these lakes among the most supersaturated temperate lakes examined so far.  相似文献   

2.
北京4海藻类群落结构特征与水体营养水平的研究   总被引:5,自引:0,他引:5  
高玉荣 《生态学报》1992,12(2):173-180
  相似文献   

3.
Stratified eutrophic lakes often suffer from hypolimnetic oxygen depletion during summer. This may lead to low redox conditions and accumulation of phosphate and ammonia in the hypolimnion. Hypolimnetic oxygenation has been used as a lake management strategy to improve the water quality in five eutrophic dimictic Danish lakes where oxygenation was conducted for 4–20 years. In one lake, the hypolimnetic oxygen concentration clearly improved by oxygenation, whereas the other four lakes still exhibited low mean summer levels (<2.2 mg O2 l−1). Oxygenation generally increased the hypolimnetic water temperature by 0.5–2°C, but in one lake it increased by 4–6°C. In all lakes, oxygenation significantly reduced the hypolimnetic concentrations of phosphorus and ammonia during stratification. The accumulation of phosphorus and ammonia typically decreased by 40–88%. In two lakes oxygenation was stopped for 1–2 years and here hypolimnion concentrations of both phosphorus and ammonia increased again. Surface water quality only improved in one lake, but was likely also influenced by simultaneously occurring changes in external nutrient loading. Overall, it is concluded that hypolimnetic oxygenation reduces the hypolimnetic accumulation of phosphorus and ammonia and may prevent anoxia in the deeper parts of the lake. However, long-term oxygenation is required and it is uncertain whether the overall lake water quality can be improved by oxygenation. Reduction of the external nutrient loading is still essential to improve lake water quality. Handling editor: Luigi Naselli-Flores  相似文献   

4.
Algal biomass, C:N:P (carbon:nitrogen:phosphorus) ratios and APA (biomass specific alkaline phosphatase activity) were measured in benthic algal communities on living substrates (mussels and macrophytes) and on rocks and stones (epilithon) in three lakes of different trophy. Benthic algal communities on living substrates had lower C:N:P ratios than epilithon, whereas algal biomass was highest on rocks and stones. Benthic algal biomass increased with the trophic level of a lake despite an increase of C:N:P ratios in the benthic community. The differences in C:N:P ratios and algal biomass between lakes of different trophy were higher on inert substrates than on macrophytes and mussels, probably because algae on living substrates could compensate a poor nutrient supply from lake water with substrate nutrients. However, the substrate was not, as expected, the most important nutrient supply in the oligotrophic lake, but in the eutrophic lake. Therefore, differences between inert and living substrates in a single lake were highest in the eutrophic lake. APA values of the oligotrophic lake were very high especially for benthic algae on stones, indicating an ability of the community to take up nutrients from organic sources. In conclusion, living substrates were an important nutrient source for benthic algae and the importance of this nutrient supply did not decrease with increasing lake trophy.  相似文献   

5.
6.
Caballero  Margarita  Vázquez  Gabriela 《Hydrobiologia》2020,847(20):4161-4176

In many temperate oligotrophic lakes, algal accumulations can form below the mixing zone. However, Deep Chlorophyll Maxima (DCM) have also been found in some eutrophic, tropical lakes and in this paper we aim to identify if they are recurrent features in these kinds of lakes and to recognize the factors that favor their formation. We analyzed 5 years of thermal stratification, water quality, and chlorophyll a concentrations in a tropical eutrophic lake in Central Mexico. Thermal stratification patterns were characteristic of warm monomictic lakes. Full water column deoxygenation during winter mixing was recorded in 3 of the analyzed years, and an increase of ~ 1 °C in the hypolimnion was detected between 2011 and 2015. DCM were detected in 4 out of the 5 studied years, at the top of the hypolimnion when the water column was stratified (spring–summer). This study is the first report of recurrent DCM formation in the northern limit of the Neotropics. It confirms that high light penetration is a necessary condition for DCM. Stratified nutrients with epilimnetic P depletion are also factors favoring DCM formation.

  相似文献   

7.
Horppila  Jukka  Kairesalo  Timo 《Hydrobiologia》1992,(1):323-331
Lake Vesijärvi, southern Finland, suffered sewere eutrophication by sewage effluent from the city of Lahti during the 1960's and the early 1970's. The municipal sewage loading was diverted from the lake in 1976 and the lake started to recover. However, in the 1980's blue-green algal blooms increased again and the recovery of the lake faded. Enclosure experiments demonstrated that high roach (Rutilus rutilus) biomass is one of the key factors in the fading recovery of the lake. In this study, the influence of roach and another cyprinid fish species (bleak, Alburnus alburnus) to planktonic algal productivity and biomass in Lake Vesijärvi was examined. Enclosure experiments in the field showed the impacts of planktivorous bleak on water quality; in an enclosure with a density of 1 fish m–2 average daily algal production (1370 mg C m–2) and chlorophyll-a concentration (50–90 µg 1–1) were more than twice that in an enclosure without fish. Laboratory experiments showed that the availability of planktonic food affects the foraging behaviour of roach and consequently the internal nutrient loading from the sediment into the water. Roach caused the highest phosphorus loading and turbidity when there was no zooplanktonic food available in the water. The possible interactions between planktivorous and omnivorous fish species are discussed.  相似文献   

8.
Jan Köhler 《Hydrobiologia》1994,289(1-3):73-83
The River Spree (Germany) flows through an impoundment and several shallow lakes in its middle and lower course. In this river-lake system, the seasonal and longitudinal dynamics of dominant phytoplankton populations were studied in relation to retention time of water, mixing conditions and nutrient supply from 1988–92. Some phytoplankton species populated the same river section for weeks or months each year at their season. Such stable populations have to origin from river zones functioning like mixed reactors. In the Spree system, centric diatoms originated from an impoundment and filamentous cyanobacteria from a flushed lake with longer retention time of water. Downstream, biomass and composition of phytoplankton altered nearly simultaneously along the system.The fate of planktonic organisms washed from mixed reactors into the flow depended on the conditions at the zones of origin. During spring, populations dominating phytoplankton communities of the well-mixed lakes grew further under river conditions. However the biomass of summer species, adapted to intermittent stratification, was halved along the river course. These seasonal differences were probably caused by lower maximum growth rates of summer species and enhanced losses (photorespiration, sedimentation or grazing of benthic filter feeders, but not of zooplankton) of algal populations under river conditions in summer.Phytoplankton assimilation, settlement of diatoms, or denitrification caused declining (probably growth limiting) concentrations of dissolved inorganic phosphorus (spring), silicon (early summer) or nitrogen (summer) along the river course, respectively. The minimum content of DRP was often followed by a clear-water phase. Reduced DSi supply selected against diatoms and additional DIN shortage favoured N2-fixing cyanobacteria in the last lake of the system.R-strategists (sensu Reynolds) were selected in both the flushed, shallow lakes and the lowland river. In general, the biomass of cyanobacteria increased within the lakes and declined along the river course. Some diatom populations grew in the river, but were grazed or settled down in the lakes. Beside this general picture, different populations from the same phylogenetic group did not necessarily perform in similar ways.  相似文献   

9.
SUMMARY. 1. The hypothesis that dissolved humic material (DHM) stimulates bacterial involvement in phosphorus transformations and may thus lead to decreased accessibility of phosphorus to algae was investigated by studying three small forest lakes in southern Finland representing a wide range of concentrations of DHM. 2. Other chemical differences between the three lakes were slight, although the most humic lake exhibited higher concentrations of total phosphorus and of molybdate-reactive phosphorus. Bacterial biomass did not differ significantly between the lakes, but algal biomass was significantly lower at higher DHM concentrations. Consequently the ratio of algal biomass to bacterial biomass was significantly lower in the most humic lake. 3. Uptake of phosphorus from added 33PO4 was partitioned between algal and bacterial size fractions by differential filtration. No significant variation between lakes was found in the proportion of particulate 33P recovered from the algal fraction. 4. Turnover times for phosphate were significantly longer in the most humic lake and also showed lower variability. In general turnover times were long in comparison with values reported from many other lakes. Only briefly in mid summmer did turnover times in two of the lakes shorten to values which would indicate that demand for phosphate was outstripping supply. 5. Short-term storage of samples from the most humic lake stimulated biological incorporation of 33P, but additions of nitrogen and iron had little effect on phosphate uptake. 6. In these small forest lakes it is probable that no single nutrient consistently limits plankton development. Since no evidence was found that DHM shifts the balance of plankton phosphate uptake away from algae towards bacteria, the influence of DHM on phosphorus transformations may rather be through chemical regulation of free phosphate availability.  相似文献   

10.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

11.
Kallio  Kari 《Hydrobiologia》1994,(1):371-378
The effect of weather on the eutrophication of a shallow lake was estimated by a hydrodynamic lake model coupled with a simple water quality module. The model was applied to Lake Villikkalanjärvi in southern Finland. This shallow, agriculturally loaded lake may stratify during warm and calm periods in summer and as a result oxygen is often consumed from the hypolimnion, causing high internal loading of phosphorus. Vertical mixing and temperature distribution in the lake were simulated by a one-dimensional, horizontally integrated hydrodynamic model. State variables included in the water quality model were dissolved reactive phosphorus, chlorophyll a and dissolved oxygen. The model was first calibrated against observations from 1989 and 1990. Thereafter, simulations were carried out using weather data from the years 1961 to 1988. The results indicated that warm summer periods may cause high chlorophyll a concentrations due to high internal loading. In four years with exceptionally warm summers the model predicted maximum chlorophyll a concentrations almost twice as high as in years without remarkable internal loading. The model simulates accurately temperature and mixing but the reliability of water quality predictions could be improved by adding more factors regulating algal biomass and sediment phosphorus release.  相似文献   

12.
Nilsson  Åke  Håkanson  Lars 《Hydrobiologia》1992,(1):675-683
The relationship between mercury content in fish (pike and perch), the different fractions of mercury in lake water and water color was investigated in 76, mainly oligotrophic lakes distributed over a large part of Sweden. The lakes were classified in terms of drainage area characteristics, lake morphometry and water chemistry. The dominant fraction of mercury in lake water was RIHg (fraction reducible to elemental mercury by NaBH4). RIHg and water color were strongly positively correlated. Water color (determined by the comparative method using colored disks) was used as a surrogate for the amount of humic matter in the water. Thus, humic matter appears to be acting as an important carrier of mercury. A positive relationship between mercury content in fish and water color was found only in deep lakes (average depth > 5 m). It is suggested that the bioavailability of mercury attached to humic matter increases due to anoxic conditions, common in the hypolimnion of deep lakes.  相似文献   

13.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

14.
Temponeras  M.  Kristiansen  J.  Moustaka-Gouni  M. 《Hydrobiologia》2000,424(1-3):109-122
Phytoplankton species composition, seasonal dynamics and spatial distribution in the shallow Lake Doïrani were studied during the growth season of 1996 along with key physical and chemical variables of the water. Weak thermal stratification developed in the lake during the warm period of 1996. The low N:P ratio suggests that nitrogen was the potential limiting nutrient of phytoplankton in the lake. In the phytoplankton of the lake, Chlorophyceae were the most species-rich group followed by Cyanophyceae. The monthly fluctuations of the total phytoplankton biomass presented high levels of summer algal biomass resembling that of other eutrophic lakes. Dinophyceae was the group most represented in the phytoplankton followed by Cyanophyceae. Diatomophyceae dominated in spring and autumn. Nanoplankton comprised around 90% of the total biomass in early spring and less than 10% in summer. The seasonal dynamics of phytoplankton generally followed the typical pattern outlined for other eutrophic lakes. R-species (small diatoms), dominant in the early phase of succession, were replaced by S-species (Microcystis, Anabaena, Ceratium) in summer. With cooling of the water in September, the biomass of diatoms (R-species) increased. The summer algal maxima consisted of a combination of H and M species associations (sensu Reynolds). Phytoplankton development in 1996 was subject to the combined effect of the thermal regime, the small depth of mixing and the increased sediment-water interactions in the lake, which caused changes in the underwater light conditions and nutrient concentrations.  相似文献   

15.
The species composition, biomass (measured as algal volumes) and chlorophyll concentration of epipelic algae was studies before (1977) and during (1978–1979) fertilization with phosphorus and nitrogen of Lake Gunillajaure, a small subarctic lake in northern Sweden.
The epipelic biomass, dominated by Cyanophyceae and Bacillariophyceae, was high (5.6–20.1 cm3 m−2) at all depths in the lake with the highest values in the hypolimnion (8–13.7 m). Calculated over mean depth it was 20 times higher than that of the phytoplankton. There was no significant increase in biomass during fertilization and neither did the species composition change. The chlorophyll concentration on the other hand were significantly higher in late 1978 and in 1979 which was probably an effect of the declining light climate caused by a large phytoplankton development in the lake. Constant seasonal biomass and species composition indicate a perennial epipelic community in this lake.  相似文献   

16.
OPINION Manipulating lake community structure: where do we go from here?   总被引:1,自引:0,他引:1  
SUMMARY. 1 More than 10 years experience with whole lake pelagic manipulation has suggested some general trends applicable to all freshwater pelagic communities and some specific trends related to lake depth.
2 Among the general trends is the observation that the trophic cascade is strongly damped. This means that changes in phytoplankton biomass can be assured only when the fish community is strongly manipulated.
3 Among the depth related trends is the observation that in shallow lakes, changes in fish community structure are more likely to have cascading impacts on phytoplankton than are changes in deep lakes.
4 In shallow lakes, fish removal frequently results in decreased turbidity which is associated with the development of dense macrophyte populations and significant reductions of algal standing stocks. The mechanisms involve: increased grazing by zooplankton, the removal of fish induced bioturbation and nutrient recycling, and direct and indirect macrophyte effects (shading, zooplankton refuges and competition for nutrients).
5 In shallow lakes, where planktivore biomass can be regulated and macrophyte development is acceptable, fish biomanipulalions are likely to result in reduced algal populations and improved water quality.
6 In deep lakes, where macrophytes are not as important, long-term effects of fish manipulations are strongly dependent upon the probability of non-grazable algal bloom development. This is determined by many factors (chemical, physical and grazer related) which modify the impact that grazers have on phytoplankton biomass.
7 In deep lakes, successful fish biomanipulations may only be effective when chemical and physical factors are altered to produce algal species compositions that permit strong top-down control of prey by predators.  相似文献   

17.
Coherent timing of agricultural expansion, fertilizer application, atmospheric nutrient deposition, and accelerated global warming is expected to promote synchronous fertilization of regional surface waters and coherent development of algal blooms and lake eutrophication. While broad‐scale cyanobacterial expansion is evident in global meta‐analyses, little is known of whether lakes in discrete catchments within a common lake district also exhibit coherent water quality degradation through anthropogenic forcing. Consequently, the primary goal of this study was to determine whether agricultural development since ca. 1900, accelerated use of fertilizer since 1960, atmospheric deposition of reactive N, or regional climate warming has resulted in coherent patterns of eutrophication of surface waters in southern Alberta, Canada. Unexpectedly, analysis of sedimentary pigments as an index of changes in total algal abundance since ca. 1850 revealed that while total algal abundance (as β‐carotene, pheophytin a) increased in nine of 10 lakes over 150 years, the onset of eutrophication varied by a century and was asynchronous across basins. Similarly, analysis of temporal sequences with least‐squares regression revealed that the relative abundance of cyanobacteria (echinenone) either decreased or did not change significantly in eight of the lakes since ca. 1850, whereas purple sulfur bacteria (as okenone) increased significantly in seven study sites. These patterns are consistent with the catchment filter hypothesis, which posits that lakes exhibit unique responses to common forcing associated with the influx of mass as water, nutrients, or particles.  相似文献   

18.
Benthic algal communities can play an important role in matter and energy flux of shallow lakes. Their contribution to total primary production of lakes has been largely unexplored. The aim of this study was to estimate the primary production of the epipsammic algal communities at different water depths in Lake Balaton (Hungary) with photosynthetic measurements performed in laboratory. The photosynthesis of the benthic algae of different origin was studied at nine different irradiance levels, in three replicates. The maximum photosynthetic rate (P max) was always higher in samples from the shallow parts than those from the deeper regions of the lake. Along the west–east longitudinal axis of the lake P max decreased in the southern part and increased in the middle of the lake as a consequence of differences in the chlorophyll-a concentrations. Knowing P max, I k, global radiation and extinction coefficient, the primary production (mg C m−2 day−1) of the epipsammic algal community was calculated at different water depths. In the shallow regions at 0.5 and 1 m water depth 75–95% and 60–85% of the production was attributable to the epipsammon. The percentage contribution of epipsammon was at 2 m water depth 20–65%. In the deeper pelagic region (>3 m) more than 85% of the primary production originated from the phytoplankton.  相似文献   

19.
Abundances of white sucker, 100–500 mm FL, were not significantly different among the epilimnia, metalimnia and portions of the hypolimnia shallower than 20 m in each of two lakes. However, small suckers < 200 mm were captured most frequently in the epilimnion and no white suckers were captured in the deepest region, 20–38 m, of the two lakes. White suckers consumed prey from all three temperature zones in each lake. Prominent food items were Hyalella azteca and the chironomid larvae Heterotrissocladius, Djalmabatista and Procladius. Despite differences in relative densities of benthic invertebrates among thermal zones of the two lakes, suckers in neither lake foraged exclusively on prey of epilimnetic origin. Suckers captured in the metalimnia foraged on invertebrates that were common to all three thermal zones. And, only 0–4% of the suckers captured in the hypolimnia of the two lakes contained prey that were unique to the epilimnia. Suckers caught in the hypolimnia mainly consumed deep water invertebrates; 83% of the suckers foraged in the metalimnion and hypolimnion of Islets Lake and 45% foraged in the hypolimnion in Burnt Island Lake. Consequently there was little evidence of a massive inshore feeding migration followed by a post-feeding return to the hypolimnion. Northern pike and lake trout rarely fed on white suckers in these lakes and thus piscivory was an unlikely factor in the observed distribution of suckers.  相似文献   

20.
1. To examine how the vertical distribution of periphytic biomass and primary production in the upper 0–1 m of the water column changes along an inter‐lake eutrophication gradient, artificial substrata (plastic strips) were introduced into the littoral zones of 13 lakes covering a total phosphorus (TP) summer mean range from 11 to 536 μg L?1. Periphyton was measured in July (after 8 weeks) and September (after 15 weeks) at three water depths (0.1, 0.5 and 0.9 m). 2. Periphyton chlorophyll a concentration and dry weight generally increased with time and the communities became more heterotrophic. Mean periphytic biomass was unimodally related to TP, reaching a peak between 60 and 200 μg L?1. 3. The proportion of diatoms in the periphyton decreased from July to September. A taxonomic shift occurred from dominance (by biovolume) of diatoms and cyanobacteria at low TP to dominance of chlorophytes at intermediate TP and of diatoms (Epithemia sp.) in the two most TP‐rich lakes. 4. The grazer community in most lakes was dominated by chironomid larvae and the total biomass of grazers increased with periphyton biomass. 5. Community respiration (R), maximum light‐saturated photosynthetic rate (Pmax), primary production and the biomass of macrograzers associated with periphyton were more closely related to periphyton biomass than to TP. Biomass‐specific rates of R, Pmax and production declined with increasing biomass. 6. Mean net periphyton production (24 h) was positive in most lakes in July and negative in all lakes in September. Net production was not related to the TP gradient in July, but decreased in September with increasing TP. 7. The results indicate that nutrient concentrations alone are poor predictors of the standing biomass and production of periphyton in shallow lakes. However, because periphyton biomass reaches a peak in the range of phosphorus concentration in which alternative states occur in shallow lakes, recolonisation by submerged macrophytes after nutrient reduction may potentially be suppressed by periphyton growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号