首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PAI-1 (plasminogen activator inhibitor-1) binds the urokinase-type plasminogen activator (uPA) and causes its degradation via its receptor uPAR and low-density lipoprotein receptor-related protein (LRP). While both uPA and PAI-1 are chemoattractants, we find that a preformed uPA-PAI-1 complex has no chemotactic activity and that PAI-1 inhibits uPA-induced chemotaxis. The inhibitory effect of PAI-1 on uPA-dependent chemotaxis is reversed when uPAR internalization is inhibited by the 39 kDa receptor-associated protein or by anti-LRP antibodies. Under the same conditions, the uPA-PAI-1 complex is turned into a chemoattractant causing cytoskeleton reorganization and extracellular-regulated kinase/mitogen-activated protein kinases activation. Thus, uPAR internalization by PAI-1 regulates cell migration.  相似文献   

2.
PAI-1 and PAI-2 (plasminogen-activator inibitor types 1 and 2) are inhibitors of cell surface uPA (urokinase plasminogen activator). However, tumour expression of PAI-1 and PAI-2 correlates with poor compared with good patient prognosis in breast cancer respectively. This biological divergence may be related to additional functional roles of PAI-1. For example, the inhibition of uPA by PAI-1 reveals a cryptic high-affinity site within the PAI-1 moiety for the VLDLr (very-low-density-lipoprotein receptor), which sustains cell signalling events initiated by binding of uPA to its receptor. These interactions and subsequent signalling events promote proliferation of breast cancer cells. Biochemical and structural analyses show that, unlike PAI-1, the PAI-2 moiety of uPA-PAI-2 does not contain a high-affinity-binding site for VLDLr, although uPA-PAI-2 is still efficiently endocytosed via this receptor in breast cancer cells. Furthermore, global protein tyrosine phosphorylation events were not sustained by uPA-PAI-2 and cell proliferation was not affected. We thus propose a structurally based mechanism for these differences between PAI-1 and PAI-2 and suggest that PAI-2 is able to inhibit and clear uPA activity without initiating mitogenic signalling events through VLDLr.  相似文献   

3.
Some endocytosis receptors related to the low-density lipoprotein receptor, including low-density lipoprotein receptor-related protein-1A, very-low-density lipoprotein receptor, and sorting protein-related receptor, bind protease-inhibitor complexes, including urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1), and the uPA-PAI-1 complex. The unique capacity of these receptors for high-affinity binding of many structurally unrelated ligands renders mapping of receptor-binding surfaces of serpin and serine protease ligands a special challenge. We have mapped the receptor-binding area of the uPA-PAI-1 complex by site-directed mutagenesis. Substitution of a cluster of basic residues near the 37-loop and 60-loop of uPA reduced the receptor-binding affinity of the uPA-PAI-1 complex approximately twofold. Deletion of the N-terminal growth factor domain of uPA reduced the affinity 2-4-fold, depending on the receptor, and deletion of both the growth factor domain and the kringle reduced the affinity sevenfold. The binding affinity of the uPA-PAI-1 complex to the receptors was greatly reduced by substitution of basic and hydrophobic residues in alpha-helix D and alpha-helix E of PAI-1. The localization of the implicated residues in the 3D structures of uPA and PAI-1 shows that they form a continuous receptor-binding area spanning the serpin as well as the A-chain and the serine protease domain of uPA. Our results suggest that the 10-100-fold higher affinity of the uPA-PAI-1 complex compared with the free components depends on the bonus effect of bringing the binding areas on uPA and PAI-1 together on the same binding entity.  相似文献   

4.
The functions of the serpin PAI-1 (plasminogen activator inhibitor-1) are based on molecular interactions with its target proteases uPA and tPA (urokinase-type and tissue-type plasminogen activator respectively), with vitronectin and with endocytosis receptors of the low-density-lipoprotein family. Understanding the significance of these interactions would be facilitated by the ability to block them individually. Using phage display, we have identified the disulfide-constrained peptide motif CFGWC with affinity for natural human PAI-1. The three-dimensional structure of a peptide containing this motif (DVPCFGWCQDA) was determined by liquid-state NMR spectroscopy. A binding site in the so-called flexible joint region of PAI-1 was suggested by molecular modelling and validated through binding studies with various competitors and site-directed mutagenesis of PAI-1. The peptide with an N-terminal biotin inhibited the binding of the uPA-PAI-1 complex to the endocytosis receptors low-density-lipoprotein-receptor-related protein 1A (LRP-1A) and very-low-density-lipoprotein receptor (VLDLR) in vitro and inhibited endocytosis of the uPA-PAI-1 complex in U937 cells. We conclude that the isolated peptide represents a novel approach to pharmacological interference with the functions of PAI-1 based on inhibition of one specific molecular interaction.  相似文献   

5.
《The Journal of cell biology》1995,131(6):1609-1622
The GPI-anchored urokinase plasminogen activator receptor (uPAR) does not internalize free urokinase (uPA). On the contrary, uPAR-bound complexes of uPA with its serpin inhibitors PAI-1 (plasminogen activator inhibitor type-1) or PN-1 (protease nexin-1) are readily internalized in several cell types. Here we address the question whether uPAR is internalized as well upon binding of uPA-serpin complexes. Both LB6 clone 19 cells, a mouse cell line transfected with the human uPAR cDNA, and the human U937 monocytic cell line, express in addition to uPAR also the endocytic alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP/alpha 2-MR) which is required to internalize uPAR-bound uPA-PAI-1 and uPA-PN-1 complexes. Downregulation of cell surface uPAR molecules in U937 cells was detected by cytofluorimetric analysis after uPA-PAI-1 and uPA-PN-1 incubation for 30 min at 37 degrees C; this effect was blocked by preincubation with the ligand of LRP/alpha 2-MR, RAP (LRP/alpha 2-MR- associated protein), known to block the binding of the uPA complexes to LRP/alpha 2-. MR. Downregulation correlated in time with the intracellular appearance of uPAR as assessed by confocal microscopy and immuno-electron microscopy. After 30 min incubation with uPA-PAI-1 or uPA-PN-1 (but not with free uPA), confocal microscopy showed that uPAR staining in permeabilized LB6 clone 19 cells moved from a mostly surface associated to a largely perinuclear position. This effect was inhibited by the LRP/alpha 2-MR RAP. Perinuclear uPAR did not represent newly synthesized nor a preexisting intracellular pool of uPAR, since this fluorescence pattern was not modified by treatment with the protein synthesis inhibitor cycloheximide, and since in LB6 clone 19 cells all of uPAR was expressed on the cell surface. Immuno-electron microscopy confirmed the plasma membrane to intracellular translocation of uPAR, and its dependence on LRP/alpha 2-MR in LB6 clone 19 cells only after binding to the uPA-PAI-1 complex. After 30 min incubation at 37 degrees C with uPA-PAI-1, 93% of the specific immunogold particles were present in cytoplasmic vacuoles vs 17.6% in the case of DFP-uPA. We conclude therefore that in the process of uPA-serpin internalization, uPAR itself is internalized, and that internalization requires the LRP/alpha 2-MR.  相似文献   

6.
The low density lipoprotein (LDL) receptor-related protein 1B (LRP1B) is a newly identified member of the LDL receptor family and is closely related to LRP. It was discovered as a putative tumor suppressor and is frequently inactivated in lung cancer cells. In the present study, we used an LRP1B minireceptor (mLRP1B4), which mimics the function and trafficking of LRP1B, to explore the roles of LRP1B on the plasminogen activation system. We found that mLRP1B4 and urokinase plasminogen activator receptor (uPAR) form immunoprecipitable complexes on the cell surface in the presence of complexes of uPA and its inhibitor, plasminogen activator inhibitor type-1 (PAI-1). However, compared with cells expressing the analogous LRP minireceptor (mLRP4), cells expressing mLRP1B4 display a substantially slower rate of uPA.PAI-1 complex internalization. Expression of mLRP1B4, or an mLRP4 mutant deficient in endocytosis, leads to an accumulation of uPAR at the cell surface and increased cell-associated uPA and PAI-1 when compared with cells expressing mLRP4. In addition, we found that expression of mLRP1B or the mLRP4 endocytosis mutant impairs the regeneration of unoccupied uPAR on the cell surface and that this correlates with a diminished rate of cell migration. Taken together, these results demonstrate that LRP1B can function as a negative regulator of uPAR regeneration and cell migration.  相似文献   

7.
Low-density lipoprotein receptor-related protein (LRP) mediates internalization of urokinase:plasminogen activator inhibitor complexes (uPA:PAI-1) and the urokinase receptor (uPAR). Here we investigated whether direct interaction between uPAR, a glycosyl-phosphatidylinositol-anchored protein, and LRP, a transmembrane receptor, is required for clearance of uPA:PAI-1, regeneration of unoccupied uPAR, activation of plasminogen, and the ability of HT1080 cells to invade extracellular matrix. We found that in the absence of uPA:PAI-1, uPAR is randomly distributed along the plasma membrane, whereas uPA:PAI-1 promotes formation of uPAR-LRP complexes and initiates redistribution of occupied uPAR to clathrin-coated pits. uPAR-LRP complexes are endocytosed via clathrin-coated vesicles and traffic together to early endosomes (EE) because they can be coimmunoprecipitated from immunoisolated EE, and internalization is blocked by depletion of intracellular K(+). Direct binding of domain 3 (D3) of uPAR to LRP is required for clearance of uPA-PAI-1-occupied uPAR because internalization is blocked by incubation with recombinant D3. Moreover, uPA-dependent plasmin generation and the ability of HT1080 cells to migrate through Matrigel-coated invasion chambers are also inhibited in the presence of D3. These results demonstrate that GPI-anchored uPAR is endocytosed by piggybacking on LRP and that direct binding of occupied uPAR to LRP is essential for internalization of occupied uPAR, regeneration of unoccupied uPAR, plasmin generation, and invasion and migration through extracellular matrix.  相似文献   

8.
Plasminogen activator inhibitor 1 (PAI-1) is a major inhibitor of urokinase-type plasminogen activator (uPA). In this study, we explored the role of PAI-1 in cell signaling. In MCF-7 cells, PAI-1 did not directly activate the mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) 1 and ERK2, but instead altered the response to uPA so that ERK phosphorylation was sustained. This effect required the cooperative function of uPAR and the very low density lipoprotein receptor (VLDLr). When MCF-7 cells were treated with uPA-PAI-1 complex in the presence of the VLDLr antagonist, receptor-associated protein, or with uPA-PAI-1(R76E) complex, which binds to the VLDLr with greatly decreased affinity, transient ERK phosphorylation (<5 min) was observed, mimicking the uPA response. ERK phosphorylation was not induced by tissue-type plasminogen activator-PAI-1 complex or by uPA-PAI-1 complex in the presence of antibodies that block uPA binding to uPAR. uPA-PAI-1 complex induced tyrosine phosphorylation of focal adhesion kinase and Shc and sustained association of Sos with Shc, whereas uPA caused transient association of Sos with Shc.By sustaining ERK phosphorylation, PAI-1 converted uPA into an MCF-7 cell mitogen. This activity was blocked by receptor-associated protein and not observed with uPA-PAI-1(R76E) complex, demonstrating the importance of the VLDLr. uPA promoted the growth of other cells in which ERK phosphorylation was sustained, including beta3 integrin overexpressing MCF-7 cells and HT 1080 cells. The MEK inhibitor, PD098059, blocked the growth-promoting activity of uPA and uPA-PAI-1 complex in these cells. Our results demonstrate that PAI-1 may regulate uPA-initiated cell signaling by a mechanism that requires VLDLr recruitment. The kinetics of ERK phosphorylation in response to uPAR ligation determine the function of uPA and uPA-PAI-1 complex as growth promoters.  相似文献   

9.
M V Cubellis  T C Wun    F Blasi 《The EMBO journal》1990,9(4):1079-1085
The receptor for urokinase plasminogen activator (uPA) has been previously shown not to internalize its ligand, but rather to focalize its activity at the cell surface, allowing a regulated cell surface plasmin dependent proteolysis. The receptor in fact binds the proenzyme pro-uPA and allows its very efficient conversion to the active two chains form. Receptor bound active uPA can also interact with its specific type 1 inhibiror (PAI-1) which is therefore able to inhibit the cell surface plasmin formation. In this paper we show that the uPA-PAI-1 complex bound to the uPA receptor is internalized and degraded. U937 cells were incubated at 4 degrees C with labeled uPA-PAI-1 (and other ligands), the temperature then raised to 37 degrees C and the fate of the ligand followed for 3 h thereafter. The uPA-PAI-1 complex was internalized into the cells (i.e. could not be dissociated by acid treatment) and thereafter degraded (i.e. appeared in the supernatant in a non TCA-precipitable form). Other ligands (free uPA, ATF and DFP-treated uPA) were not internalized nor degraded. The degradation of the uPA-PAI-1 complex is preceded by internalization and is inhibited by chloroquine, an inhibitor of lysosomal protein degradation. These data suggest the existence of a cellular cycle of uPA. After synthesis pro-uPA is secreted, bound to the receptor and activated to two chain uPA. On the surface, uPA can activate surface bound plasminogen to produce surface bound plasmin. In the presence of PAI-1 uPA activity is inhibited and plasmin production interrupted, while the uPA-PAI-1 complex is internalized and degraded.  相似文献   

10.
Urokinase plasminogen activator (uPA) and PA inhibitor type 1 (PAI-1) are elevated in acute lung injury, which is characterized by a loss of endothelial barrier function and the development of pulmonary edema. Two-chain uPA and uPA-PAI-1 complexes (1-20 nM) increased the permeability of monolayers of human pulmonary microvascular endothelial cells (PMVECs) in vitro and lung permeability in vivo. The effects of uPA-PAI-1 were abrogated by the nitric-oxide synthase (NOS) inhibitor L-NAME (N(D)-nitro-L-arginine methyl ester). Two-chain uPA (1-20 nM) and uPA-PAI-1 induced phosphorylation of endothelial NOS-Ser(1177) in PMVECs, which was followed by generation of NO and the nitrosylation and dissociation of β-catenin from VE-cadherin. uPA-induced phosphorylation of eNOS was decreased by anti-low density lipoprotein receptor-related protein-1 (LRP) antibody and an LRP antagonist, receptor-associated protein (RAP), and when binding to the uPA receptor was blocked by the isolated growth factor-like domain of uPA. uPA-induced phosphorylation of eNOS was also inhibited by the protein kinase A (PKA) inhibitor, myristoylated PKI, but was not dependent on PI3K-Akt signaling. LRP blockade and inhibition of PKA prevented uPA- and uPA-PAI-1-induced permeability of PMVEC monolayers in vitro and uPA-induced lung permeability in vivo. These studies identify a novel pathway involved in regulating PMVEC permeability and suggest the utility of uPA-based approaches that attenuate untoward permeability following acute lung injury while preserving its salutary effects on fibrinolysis and airway remodeling.  相似文献   

11.
Complexes between 125I-labeled urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) bound to purified alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein (LRP). No binding was observed when using uPA. The magnitude of uPA.PAI-1 binding was comparable with that of the alpha 2MR-associated protein (alpha 2MRAP). Binding of uPA.PAI-1 was blocked by natural and recombinant alpha 2MRAP, and about 80% inhibited by complexes between tissue-type plasminogen activator (tPA) and PAI-1, and by a monoclonal anti-PAI-1 antibody. In human monocytes, uPA.PAI-1, like uPA and its amino-terminal fragment, bound to the urokinase receptor (uPAR). Degradation of uPAR-bound 125I-uPA.PAI-1 was 3-4-fold enhanced as compared with uncomplexed uPAR-bound uPA. The inhibitor-enhanced uPA degradation was blocked by r alpha 2MRAP and inhibited by polyclonal anti-alpha 2MR/LRP antibodies. This is taken as evidence for mediation of internalization and degradation of uPAR-bound uPA.PAI-1 by alpha 2MR/LRP.  相似文献   

12.
Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13–800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association.  相似文献   

13.
We localized the epitopes for several murine mAbs to human urokinase-type plasminogen activator (uPA) by Ala scanning mutagenesis and related the localization to the effects of the mAbs on the molecular interactions of uPA. Several antibodies against the serine proteinase domain (SPD) were found to have overlapping epitopes composed of variable combinations of Arg178, Arg179, His180, Arg181, Tyr209, Lys211, and Asp214 in the so-called 37-loop and 60-loop, located near the active site and taking part in the binding of uPA to plasminogen activator inhibitor-1 (PAI-1). Besides inhibiting uPA-catalysed plasminogen activation, all antibodies to SPD strongly delayed the binding of uPA to PAI-1, decreasing the second-order rate constant 15- to 6500-fold. There was no correlation between the relative effects of the 37-loop and 60-loop substitutions on the second-order rate constant and on the binding of the antibodies, indicating that the antibodies did not delay complex formation by blocking residues of specific importance for the uPA-PAI-1 reaction, but rather by steric hindrance of the access of PAI-1 to the active site. The affinity of the SPD antibodies for the uPA-PAI-1 complex was only slightly lower than that for free uPA, indicating that the 37-loop and 60-loop are exposed in the complex. The epitopes for two antibodies to the kringle included Arg108, Arg109, and Arg110. The ability of these antibodies to block the binding of uPA to polyanions correlated with a reduced uPA-polyanion affinity after substitution of the three Arg residues.  相似文献   

14.
Receptor-bound urokinase-type plasminogen activator (uPA) remains associated to the surface of human monocytes for many hours. Monocytes induced to migrate in a chemotactic gradient of f-Met-Leu-Phe rapidly polarize their uPA receptors to the leading front of the cells. Receptor-bound enzyme can be inhibited by plasminogen activator inhibitor 2 (PAI-2), with a kinetics comparable to that determined for the free enzyme, and uPA/PAI-2 complexes can bind to the uPA receptor. In contrast to the active enzyme, the uPA/PAI-2 complex is rapidly cleared from the monocyte cell surface; this involves an initial cleavage of the complex at the cell surface, followed by endocytosis and degradation. These results indicate that the uPA receptor can function both to focus plasmin-mediated extracellular matrix degradation in front of migrating cells, and to target uPA/PAI-2 enzyme/inhibitor complexes for degradation; they suggest that this receptor is a key determinant in the control of uPA-catalyzed extracellular proteolysis.  相似文献   

15.
The serine proteinase inhibitor plasminogen activator inhibitor type-1 (PAI-1) is the primary physiological inhibitor of the tissue-type and the urokinase-type plasminogen activator (tPA and uPA, respectively) and as such an important regulator of proteolytic events taking place in the circulation and in the extracellular matrix. Moreover, a few non-proteolytic functions have been ascribed to PAI-1, mediated by its interaction with vitronectin or the interaction between the uPA-PAI-1 complex bound to the uPA receptor and members of the low density lipoprotein receptor family. PAI-1 belongs to the serpin family, characterised by an unusual conformational flexibility, which governs its molecular interactions. In this review we describe the anti-proteolytic and non-proteolytic functions of PAI-1 from both a biological and a biochemical point of view. We will relate the various biological roles of PAI-1 to its biochemistry in general and to the different conformations of PAI-1 in particular. We put emphasis on the intramolecular rearrangements of PAI-1 that are required for its antiproteolytic as well as its non-proteolytic functions.  相似文献   

16.
Transgenic mice expressing IGFBP-5 in the mammary gland exhibit increased cell death and plasmin generation. Because IGFBP-5 has been reported to bind to plasminogen activator inhibitor-1 (PAI-1), we determined the effects of this interaction in HC11 cells. PAI-1 prevented plasmin generation from plasminogen and inhibited cleavage of focal adhesions, expression of caspase 3, and cell death. IGFBP-5 could in turn prevent the effects of PAI-1. IGFBP-5 mutants with reduced affinity for IGF-I (N-term) or deficient in heparin binding (HEP- and C-term E and F) were also effective. This was surprising because IGFBP-5 reportedly interacts with PAI-1 via its heparin-binding domain. Biosensor analysis confirmed that, although wild-type IGFBP-5 and N-term both bound to PAI-1, the C-term E had greatly decreased interaction with PAI-1. This suggests that IGFBP-5 does not antagonize the actions of PAI-1 by a direct molecular interaction. In a cell-free system, using tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) to activate plasminogen, PAI-1 inhibited plasmin generation induced by both activators, whereas IGFBP-5 prevented the effects of PAI-1 on tPA but not uPA. Furthermore, we noted that IGFBP-5 activated plasminogen to a greater extent than could be explained solely by inhibition of PAI-1, suggesting that IGFBP-5 could directly activate tPA. Indeed, IGFBP-5 and the C-term E and F were all able to enhance the activity of tPA but not uPA. These data demonstrate that IGFBP-5 can enhance the activity of tPA and that this can result in cell death induced by cleavage of focal adhesions. Thus IGFBP-5 can induce cell death by both sequestering IGF-I and enhancing plasmin generation.  相似文献   

17.
Migration of activated macrophages is essential for resolution of acute inflammation and the initiation of adaptive immunity. Here, we show that efficient macrophage migration in inflammatory environment depends on Mac-1 recognition of a binary complex consisting of fibrin within the provisional matrix and the protease tPA (tissue-type plasminogen activator). Subsequent neutralization of tPA by its inhibitor PAI-1 enhances binding of the integrin-protease-inhibitor complex to the endocytic receptor LRP (lipoprotein receptor-related protein), triggering a switch from cell adhesion to cell detachment. Genetic inactivation of Mac-1, tPA, PAI-1 or LRP but not the protease uPA abrogates macrophage migration. The defective macrophage migration in PAI-1-deficient mice can be restored by wild-type but not by a mutant PAI-1 that does not interact with LRP. In vitro analysis shows that tPA promotes Mac-1-mediated adhesion, whereas PAI-1 and LRP facilitate its transition to cell retraction. Our results emphasize the importance of ordered transitions both temporally and spatially between individual steps of cell migration, and support a model where efficient migration of inflammatory macrophages depends on cooperation of three physiologically prominent systems (integrins, coagulation and fibrinolysis, and endocytosis).  相似文献   

18.
The processes of ovarian cancer dissemination are characterized by altered local proteolysis, cellular proliferation, cell attachment, and invasion, suggesting that the urokinase-type plasminogen activator (uPA) and its specific inhibitor (plasminogen activator inhibitor type-1 (PAI-1)) could be involved in the pathogenesis of peritoneal dissemination. We showed previously that expression of uPA and PAI-1 in the human ovarian cancer cell line HRA can be down-regulated by exogenous bikunin (bik), a Kunitz-type protease inhibitor, via suppression of transforming growth factor-beta1 (TGF-beta1) up-regulation and that overexpression of the bik gene can specifically suppress the in vivo growth and peritoneal dissemination of HRA cells in an animal model. We hypothesize that the plasminogen activator system in mesothelial cells can be modulated by HRA cells. To test this hypothesis, we used complementary techniques in mesothelial cells to determine whether uPA and PAI-1 expression are altered by exposure to culture media conditioned by HRA cells. Here we show the following: 1) that expression of PAI-1, but not uPA, was markedly induced by culture media conditioned by wild-type HRA cells but not by bik transfected clones; 2) that by antibody neutralization the effect appeared to be mediated by HRA cell-derived TGF-beta1; 3) that exogenous TGF-beta1 specifically enhanced PAI-1 up-regulation at the mRNA and protein level in mesothelial cells in a time- and concentration-dependent manner, mainly through MAPK-dependent activation mechanism; and 4) that mesothelial cell-derived PAI-1 may promote tumor invasion possibly by enhancing cell-cell interaction. This represents a novel pathway by which tumor cells can regulate the plasminogen activator system-dependent cellular responses in mesothelial cells that may contribute to formation of peritoneal dissemination of ovarian cancer.  相似文献   

19.
We have investigated the role of the plasminogen activation cascade in skeletal muscle differentiation. Migrating, undifferentiated myoblasts express urokinase plasminogen activator (uPA) and its cell surface receptor (uPAR). Consequently, uPA is localized predominantly to the cell surface. Preventing uPA from associating with its receptor with a noncatalytic form of uPA (NC-uPA) hinders migration of myoblasts and inhibits differentiation. When myoblasts reach confluence, cease migrating, and start to differentiate, uPAR gets downregulated, and uPA becomes redistributed from the cell surface to the extracellular space. The function of uPA at this stage was tested using the protease inhibitors aprotinin, α2-antiplasmin, or plasminogen activator inhibitor-1 (PAI-1). Contrary to the role of cell-associated uPA, inhibition of soluble uPA/plasmin stimulates differentiation of myoblasts. Aprotinin can inhibit activation of latent TGFβ and stimulates differentiation, suggesting PAI-1 and α2-antiplasmin also may stimulate differentiation via this mechanism. These data suggest that regulation of uPA localization allows a dual function for this protease in regulating cell migration and controlling cell differentiation. J. Cell. Physiol. 171:217–225, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The serine proteinase urokinase-type plasminogen activator (uPA) is widely recognized as a potential target for anticancer therapy. Its association with cell surfaces through the uPA receptor (uPAR) is central to its function and plays an important role in cancer invasion and metastasis. In the current study, we used systematic evolution of ligands by exponential enrichment (SELEX) to select serum-stable 2'-fluoro-pyrimidine-modified RNA aptamers specifically targeting human uPA and blocking the interaction to its receptor at low nanomolar concentrations. In agreement with the inhibitory function of the aptamers, binding was found to be dependent on the presence of the growth factor domain of uPA, which mediates uPAR binding. One of the most potent uPA aptamers, upanap-12, was analyzed in more detail and could be reduced significantly in size without severe loss of its inhibitory activity. Finally, we show that the uPA-scavenging effect of the aptamers can reduce uPAR-dependent endocytosis of the uPA-PAI-1 complex and cell-surface associated plasminogen activation in cell culture experiments. uPA-scavenging 2'-fluoro-pyrimidine-modified RNA aptamers represent a novel promising principle for interfering with the pathological functions of the uPA system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号